
Samyukta Mudugal

CSCI 5448 – Spring 2011

C# THREADS

3/30/2011 1

3/30/2011 2

Outline

• Introduction to threads.

• Advantages and Disadvantages of using threads

• C# support for threading

• Creating threads in C#
• Using Thread Class

• Using Thread Pool

• Synchronization of threads

• Blocking

• Simple Locking

• Mutex

• Semaphores

• Deadlocks

• Aborting Threads

Thread

• A thread is an independent execution path with its own resources
allocated by the CPU.

• Threads run in parallel within a process just as processes run in
parallel on a computer.

• A process can have multiple threads and they share memory among
them.

• Each thread had its own context of execution.

• The meaning of context differs from one OS to the other.

• It could be any of these – registers, memory maps, tables, lists etc.
3/30/2011 3

Magic of Multithreading

• Achieve true parallelism in a multiprocessor environment.

• The threads can execute in parallel on different processors.

• Increasing the responsiveness of a user interface.

• By running a parallel “worker” thread, the main UI thread is free to
continue processing keyboard and mouse events.

• Achieve better use of an otherwise blocked CPU.

• While one thread waits for a response from a hardware or another
computer, the other threads can continue execution.

• Distinguish tasks of varying priority.

• A high-priority thread manages time-critical tasks, and a low-priority thread
performs other tasks.

3/30/2011 4

Cost of Multithreading

• System could get complex!

• CPU costs – scheduling, managing, switching, creation/tear down.

• Instead of making your system faster it could in turn make it slower!

• Controlling the shared access of resources.

• Using the synchronization objects appropriately around the shared
resources.

• IF synchronization is not done properly it could lead to problems
such as deadlocks, race conditions.

• These issues are extremely hard to debug.

• Testing multithreaded applications is harder.

• Defects are often timing-related and more difficult to reproduce.

3/30/2011 5

Threading in C#

• Import the following namespaces to support threading -

 using System;

 using System.Threading;

• C# client program starts in a single thread created automatically
by the CLR and operating system (the “main” thread), and is made
multithreaded by creating additional threads.

• C# provides a ‘thread’ class that can be used to create a thread,
control a thread, set its priority, get its status, etc.

• C# also provides a pool of threads to which tasks can be assigned.

3/30/2011 6

Thread State Machine
• A thread can be in one of the major states shown below

3/30/2011 7

Creation
• C# supports 2 methods to create threads

• Using the Thread class.

• Using the Thread pool.

• Thread Class: A new thread object is created and a delegate is
passed to the thread’s constructor.

• A thread ends when the delegate passed to the Thread’s constructor
finishes executing.

• Thread Pool: C# provides a pool of threads. Tasks can be assigned
to the threads in the pool. This gets rid of the overhead of
creation, deletion and managing the threads.

3/30/2011 8

Using the Thread Class

3/30/2011 9

Output:
• The Main thread prints Y.

• The thread created ‘foo’ prints X.

3/30/2011 10

Using the Thread Pool

• Initializing the arrays and Manual Reset Events.

• Manual Reset Event is an object that allows one thread to signal
another thread when something happens. In the case of this code,
we use these events to signal the main thread that a work item has
been completed.

3/30/2011 11

Thread Pool contd..
• Assigning the tasks to the threads in the pool.

• Any method that you want to queue up for the thread pool to run
needs to take one argument, an object, and return void.

• The argument will end up being whatever you passed in as the
second argument to the QueueUserWorkItem call.

3/30/2011 12

Synchronization

• Synchronization refers to coordinating the actions of threads for a
predictable outcome.

• Synchronization is particularly important when threads access the
same data.

• 4 different kinds of synchronization constructs:

• Simple Blocking methods

• Locking Constructs

• Signaling Constructs

• Non Blocking Synchronization Constructs

3/30/2011 13

Blocking

• Sometimes a thread might have to pause until a certain condition is
met. It could either spin or block.

• A blocked thread immediately yields its processor time slice, and
from then on consumes no processor time until its blocking
condition is satisfied.

• Spinning is wasteful on processor time because time and resources
are allocated accordingly even though the thread is just waiting.

• Some methods used for this are: Sleep, Join and Task.Wait.

• The ThreadState property is used to check if the thread is blocked.

3/30/2011 14

Simple Locking

• 3 main exclusive locking constructs are locks, mutexes and
semaphores.

• Only one thread can lock the synchronizing object (myLock) at a
time, and any contending threads are blocked until the lock is
released.

• If more than one thread contends the lock, they are queued on a
“ready queue” and granted the lock on a first-come, first-served
basis.

3/30/2011 15

Mutex

• Mutexes can span across multiple processes in a system.

• To lock the mutex: WaitOne method

• To unlock the mutex: ReleaseMutex method

3/30/2011 16

Semaphores
• Semaphores limit the number of threads that can access a resource

concurrently. The maximum number of threads is called the
capacity of the semaphore.

• They work by keeping a counter.

• Each time a thread obtains the semaphore the counter is
incremented and once the semaphore is released the counter is
decremented.

• A semaphore with a capacity of one is same as a mutex or a lock.

• Any thread can call lock or release on a semaphore but with a
mutex, only the thread that obtained it can release it.

• Semaphores can be useful in preventing too many threads
executing the same piece of code at once.

3/30/2011 17

Semaphores contd..

3/30/2011 18

Deadlocks

• A deadlock happens when two threads each wait for a resource
held by the other, so neither can proceed.

• Example of deadlock:

• Thread 1 acquires lock A.

• Thread 2 acquires lock B.

• Thread 1 attempts to acquire lock B, but it is already held by Thread 2 and
thus Thread 1 blocks until B is released.

• Thread 2 attempts to acquire lock A, but it is held by Thread 1 and thus
Thread 2 blocks until A is released

• At this point, both threads are blocked and will never wake up!

3/30/2011 19

Deadlocks contd..
• Example code to demonstrate

deadlock

• Deadlocks can be avoided using
various methods such as:

• Lock Leveling

• Threads acquiring the resource in
same order.

• Using a time out during acquiring a
lock.

• Be wary of locking around calling
methods in objects that may have
references back to your own
object.

3/30/2011 20

Aborting Threads
• A thread can be forcibly ended by calling the ‘abort’ method.

• The thread upon being aborted immediately enters the
AbortRequested state. If it then terminates as expected, it goes
into the Stopped state. The caller can wait for this to happen by
calling Join.

3/30/2011 21

References

• MSDN C# threads library and tutorial -

 http://msdn.microsoft.com/en-us/library/aa645740(v=VS.71).aspx

• Threading in C# -Joseph Albahari

 http://www.albahari.com/threading/

• Wikipedia Entry on threads

 http://en.wikipedia.org/wiki/Thread_(computer_science)

3/30/2011 22

Questions?

3/30/2011 23

