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What is Apache Hadoop?   
•  Large scale, open source software framework 
▫   Yahoo! has been the largest contributor to date 

•  Dedicated to scalable, distributed, data-intensive 
computing 

• Handles thousands of nodes and petabytes of data 
•  Supports applications under a free license 
•  3 Hadoop subprojects: 
▫   Hadoop Common: common utilities package 
▫   HFDS: Hadoop Distributed File System with high 

throughput access to application data 
▫   MapReduce: A software framework for distributed 

processing of large data sets on computer clusters  



Hadoop MapReduce 

• MapReduce is a programming model and software 
framework first developed by Google (Google’s 
MapReduce paper submitted in 2004) 

•  Intended to facilitate and simplify the processing of 
vast amounts of data in parallel on large clusters of 
commodity hardware in a reliable, fault-tolerant 
manner 
▫   Petabytes of data 
▫   Thousands of nodes 

•  Computational processing occurs on both: 
▫   Unstructured data : filesystem 
▫   Structured data : database 



Hadoop Distributed File System (HFDS) 
•  Inspired by Google File System 
•  Scalable, distributed, portable filesystem written in Java for 

Hadoop framework 
▫   Primary distributed storage used by Hadoop applications 

•  HFDS can be part of a Hadoop cluster or can be a stand-alone 
general purpose distributed file system 

•  An HFDS cluster primarily consists of 
▫   NameNode that manages file system metadata  
▫   DataNode that stores actual data 

•  Stores very large files in blocks across machines in a large 
cluster 
▫   Reliability and fault tolerance ensured by replicating data across 

multiple hosts 
•  Has data awareness between nodes 
•  Designed to be deployed on low-cost hardware 



More on Hadoop file systems   

• Hadoop can work directly with any distributed 
file system which can be mounted by the 
underlying OS 

• However, doing this means a loss of locality as 
Hadoop needs to know which servers are closest 
to the data 

• Hadoop-specific file systems like HFDS are 
developed for locality, speed, fault tolerance, 
integration with Hadoop, and reliability 



Typical Hadoop cluster integrates 
MapReduce and HFDS   

• Master/slave architecture 
• Master node contains 
▫   Job tracker node (MapReduce layer) 
▫   Task tracker node (MapReduce layer) 
▫   Name node (HFDS layer) 
▫   Data node (HFDS layer) 

• Multiple slave nodes contain 
▫   Task tracker node (MapReduce layer) 
▫   Data node (HFDS layer) 

• MapReduce layer has job and task tracker nodes 
• HFDS layer has name and data nodes 
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MapReduce framework 

•  Per cluster node: 
▫   Single JobTracker per master 
   Responsible for scheduling the jobs’ component tasks 

on the slaves 
  Monitors slave progress 
   Re-executing failed tasks 
▫   Single TaskTracker per slave 
   Execute the tasks as directed by the master 



MapReduce core functionality 
•  Code usually written in Java- though it can be written in 

other languages with the Hadoop Streaming API 
•  Two fundamental pieces: 
▫   Map step 

   Master node takes large problem input and slices it into 
smaller sub problems; distributes these to worker nodes. 

   Worker node may do this again; leads to a multi-level tree 
structure 

   Worker processes smaller problem and hands back to master 
▫   Reduce step 

   Master node takes the answers to the sub problems and 
combines them in a predefined way to get the output/answer 
to original problem 



MapReduce core functionality (II) 
•  Data flow beyond the two key pieces (map and reduce): 
▫   Input reader – divides input into appropriate size splits 

which get assigned to a Map function 
▫   Map function – maps file data to smaller, intermediate 

<key, value> pairs 
▫   Partition function – finds the correct reducer: given the key 

and number of reducers, returns the desired Reduce node 
▫   Compare function – input for Reduce is pulled from the 

Map intermediate output and sorted according to ths 
compare function 
▫   Reduce function – takes intermediate values and reduces to 

a smaller solution handed back to the framework 
▫   Output writer – writes file output 



MapReduce core functionality (III) 
• A MapReduce Job controls the execution 
▫   Splits the input dataset into independent chunks 
▫   Processed by the map tasks in parallel 

•  The framework sorts the outputs of the maps  
• A MapReduce Task is sent the output of the 

framework to reduce and combine 
• Both the input and output of the job are stored 

in a filesystem 
•  Framework handles scheduling 
▫   Monitors and re-executes failed tasks 



MapReduce input and output 
• MapReduce operates exclusively on <key, value> 

pairs 
•  Job Input: <key, value> pairs 
•  Job Output: <key, value> pairs 
▫   Conceivably of different types 

• Key and value classes have to be serializable by the 
framework. 
▫   Default serialization requires keys and values to 

implement Writable 
▫   Key classes must facilitate sorting by the framework 



Input and Output (II) 

<k1, v1>

Input 

<k2, v2> <k2, v2> <k3, v3>

Output 
map combine* reduce 

From  
http://code.google.com/edu/parallel/mapreduce-tutorial.html 



To explain in detail, we’ll use a code 
example: WordCount  

Count occurrences of each word across 
different files 

Two input files: 
   file1: “hello world hello moon” 
   file2: “goodbye world goodnight moon” 

Three operations: 
   map 
   combine 
   reduce 



What is the output per step? 
MAP
First map:     Second map: 
< hello, 1 >   < goodbye, 1 >
< world, 1 >   < world, 1 >
< hello, 1 >   < goodnight, 1 >
< moon, 1 >   < moon, 1 >

COMBINE
First map:     Second map: 
< moon, 1 >   < goodbye, 1 >
< world, 1 >   < world, 1 >
< hello, 2 >   < goodnight, 1 >
     < moon, 1 >
REDUCE
< goodbye, 1 >
< goodnight, 1 >
< moon, 2 >  
< world, 2 >   
< hello, 2 > 



Main run method – the engine 
public int run(String[] args) {
 Job job = new Job(getConf()); 
 job.setJarByClass(WordCount.class);

   job.setJobName(“wordcount”);

   job.setOutputKeyClass(Text.class);          
   job.setOutputValueClass(IntWritable.class); 

 job.setMapperClass(Map.class);  
   job.setCombinerClass(Reduce.class); 
   job.setReducerClass(Reduce.class); 

   job.setInputFormatClass(TextInputFormat.class); 

   job.setOutputFormatClass(TextOutputFormat.class);

   FileInputFormat.setInputPaths(job, new Path(args[0]));  
   FileOutputFormat.setOutputPaths(job, new Path(args[1]));
   boolean success = job.waitForCompletion(true); 

   return success ? 0 : 1;
}



Main run method: pseudocode 
public int run(String[] args) {
 - Create a new job with the given configuration 

 - Set Job Output <key.class, value.class> as 
 <Text, IntWritable>
 
 - Set Job Input <key.class, value.class> as 

<TextInputFormat, TextOutputFormat>
 
 - Tell Job to use our Map as Mapper class
 - Tell Job to use our Reduce as Combiner class
 - Tell Job to use our Reduce as Reducer class

 - Set file input paths
 - Set file output paths in the Job
 - Wait until Job is done
 - Return success if successful
}



Job details 
•  Job sets the overall MapReduce job configuration 
•  Job is specified client-side 
•  Primary interface for a user to describe a 

MapReduce job to the Hadoop framework for 
execution 

•  Used to specify 
▫   Mapper 
▫   Combiner (if any) 
▫   Partitioner (to partition key space) 
▫   Reducer 
▫   InputFormat 
▫   OutputFormat 
▫   Many user options; high customizability 



Job details (II) 

•  Jobs can be monitored by users 
• Users can chain MapReduce jobs together to 

accomplish complex tasks which cannot be done 
with a single MapReduce job 
▫   make use of Job.waitForCompletion() 
▫   and Job.submit() 



Map class for WordCount 
public static class Map extends Mapper {

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context 
context) {

 String line = value.toString();
 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {
  word.set(tokenizer.nextToken());

  context.write(word, one);

 }
}

}

Map class implements a public map method, that processes one line at a 
time and splits each line into tokens separated by whitespaces. It emits a 
key-value pair of < <word>, 1>, written to the Context. 



Map class (II) 
Remember our input files: 
   file1: “hello world hello moon” 
   file2: “goodbye world goodnight moon” 

Two maps are generated (1 per file) 
First map emits:   Second map emits: 
< hello, 1 >   < goodbye, 1 >
< world, 1 >   < world, 1 >
< hello, 1 >   < goodnight, 1 >
< moon, 1 >   < moon, 1 >



Mapper 
•  Mapper maps input key/value pairs to a set of 

intermediate key/value pairs 
•  Implementing classes extend Mapper and override map() 
▫   Main Mapper engine: Mapper.run() 

   setup() 
   map() for each input record 
   cleanup() 

•  Mapper implementations are specified in the Job 
•  Mapper instantiated in the Job 
•  Output data is emitted from Mapper via the Context 

object 
•  Hadoop MapReduce framework spawns one map task for 

each logical representation of a unit of input work for a 
map task 
▫   E.g. a filename and a byte range within that file 



How many maps? 

•  The number of maps is driven by the total size of 
the inputs 

• Hadooop has found the right level of parallelism 
for maps is between 10-100 maps/node 

•  If you expect 10TB of input data and have a block 
size of 128MB, you will have 82,000 maps 

• Number of tasks controlled by number of splits 
returned and can be user overridden 



Context object details 

•  Context object: allows the Mapper to interact with 
the rest of the Hadoop system 

•  Includes configuration data for the job as well as 
interfaces which allow it to emit output 

•  Applications can use the Context  
▫   to report progress  
▫   to set application-level status messages 
▫   update Counters 
▫   indicate they are alive 

Recall Mapper code:
while (tokenizer.hasMoreTokens()) {

word.set(tokenizer.nextToken());
context.write(word, one);

}



Combiner class 
•  Specifies how to combine the maps for local 

aggregation 
•  In this example, it is the same as the Reduce 

class 
• Output after running combiner: 

First map:    Second map: 
< moon, 1 >   < goodbye, 1 >
< world, 1 >  < world, 1 >
< hello, 2 >  < goodnight, 1 >
     < moon, 1 >



Details on Combiner class and 
intermediate outputs 

•  Framework groups all intermediate values 
associated with a given output key  

•  Passed to the Reducer class to get final output 
• User-specified Comparator can be used to control 

grouping  
• Combiner class can be user specified to perform 

local aggregation of the intermediate outputs 
•  Intermediate, sorted outputs always stored in a 

simple format 
▫   Applications can control if (and how) intermediate 

outputs are to be compressed (and the 
CompressionCode) in the Job 



Reduce class for WordCount 
public static class Reduce extends Reducer {

public void reduce(Text key, Iterable<IntWritable> 
values, Context context) {

   int sum = 0;

   for (IntWritable val : values) {

      sum += val.get();
   }

   context.write(key, new IntWritable(sum));
}

}

The framework puts together all the pairs with the same key and feeds 
them to the reduce function, that then sums the values to give 
occurrence counts. 



Reduce class (II) 
Recall the output of the job: a count of occurrences. 

< goodbye, 1 >
< goodnight, 1 >
< moon, 2 >   
< world, 2 >  
< hello, 2 >  
     



Reducer (III) 
•  Reduces a set of intermediate values which share a 

key to a (usually smaller) set of values 
•  Sorts and partitions Mapper outputs 
•  Number of reduces for the job set by user via 

Job.setNumReduceTasks(int) 
•  Reduce engine 
▫   receives a Context containing job’s configuration as 

well as interfacing methods that return data back to 
the framework 
▫   Reducer.run()   

   setup() 
   reduce() per key associated with reduce task 
   cleanup() 



Reducer (IV) 
• Reducer.reduce() 
▫   Called once per key 
▫   Passed in an Iterable which returns all values 

associated with that key 
▫   Emits output with Context.write() 
▫   Output is not sorted. 
▫   3 primary phases 
   Shuffle: the framework fetches relevant partitions of 

the output of all mappers via HTTP 
   Sort: framework groups Reducer inputs by keys 
   Reduce: reduce called on each <key, (value list) > 



How many reduces? 
•  0.95 or 1.75 multiplied by (numberOfNodes * 

mapreduce.tasktracker.reduce.tasks.maximum 
•  0.95 : all of the reduces can launch immediately 

and start transferring map outputs as the maps 
finish 

•  1.75: the faster nodes will finish their first round 
of reduces and launch a second wave of reduces, 
doing a better job of load balancing 

•  Increasing number of reduces increases 
framework overhead; and increases load 
balancing and lowers cost of failures 



Task Execution and Environment 

•  TaskTracker executes Mapper/Reducer task as a 
child process in a separate jvm 

• Child task inherits the environment of the parent 
TaskTracker 

• User can specify environmental variables 
controlling memory, parallel computation 
settings, segment size, and more  



Scheduling   
• By default, Hadoop uses FIFO to schedule jobs. 

Alternate scheduler options: capacity and fair 
• Capacity scheduler 
▫   Developed by Yahoo 
▫   Jobs are submitted to queues 
▫   Jobs can be prioritized 
▫   Queues are allocated a fraction of the total 

resource capacity 
▫   Free resources are allocated to queues beyond 

their total capacity 
▫   No preemption once a job is running 



•  Fair scheduler 
▫   Developed by Facebook 
▫   Provides fast response times for small jobs 
▫   Jobs are grouped into Pools 
▫   Each pool assigned a guaranteed minimum share 
▫   Excess capacity split between jobs 
▫   By default, jobs that are uncategorized go into a 

default pool. Pools have to specify the minimum 
number of map slots, reduce slots, and a limit on 
the number of running jobs 



Requirements of applications using 
MapReduce 

•  Specify the Job configuration 
▫   Specify input/output locations 
▫   Supply map and reduce functions via 

implementations of appropriate interfaces and/or 
abstract classes 

•  Job client then submits the job (jar/executables 
etc) and the configuration to the JobTracker 



What about bad input?   
• Hadoop provides an option to skip bad records: 
▫   SkipBadRecords class 

•  Used when map tasks crash deterministically on 
certain input 
▫   Usually a result of bugs in the map function 
▫   May be in 3rd party libraries 
▫   Tasks never complete successfully even after multiple 

attempts 
•  Framework goes into ‘skipping mode’ after a certain 

number of map failures 
•  Number of records skipped depends on how 

frequently the processed record counter is 
incremented by the application 



What are Hadoop/MapReduce 
limitations? 
•  Cannot control the order in which the maps or 

reductions are run 
•  For maximum parallelism, you need Maps and 

Reduces to not depend on data generated in the 
same MapReduce job (i.e. stateless) 

•  A database with an index will always be faster than a 
MapReduce job on unindexed data 

•  Reduce operations do not take place until all Maps 
are complete (or have failed then been skipped) 

•  General assumption that the output of Reduce is 
smaller than the input to Map; large datasource 
used to generate smaller final values 



Who’s using it?   
•  Lots of companies! 
▫   Yahoo!, AOL, eBay, Facebook, IBM, Last.fm, LinkedIn, 

The New York Times, Ning, Twitter, and more 
•  In 2007 IBM and Google announced an initiative to 

use Hadoop to support university courses in 
distributed computer programming 

•  In 2008 this collaboration and the Academic Cloud 
Computing Initiative were funded by the NSF and 
produced the Cluster Exploratory Program (CLuE) 



Summary and Conclusion 
•  Hadoop MapReduce is a large scale, open source 

software framework dedicated to scalable, distributed, 
data-intensive computing 

•  The framework breaks up large data into smaller 
parallelizable chunks and handles scheduling 
▫   Maps each piece to an intermediate value 
▫   Reduces intermediate values to a solution 
▫   User-specified partition and combiner options 

•  Fault tolerant, reliable, and supports thousands of nodes 
and petabytes of data 

•  If you can rewrite algorithms into Maps and Reduces, 
and your problem can be broken up into small pieces 
solvable in parallel, then Hadoop’s MapReduce is the 
way to go for a distributed problem solving approach to 
large datasets 

•  Tried and tested in production 
•  Many implementation options 


