
CakePHP
The Rapid Development PHP Framework

By Khalid Alharbi

1 Khalid Alharbi, © 2011

Contents
 What’s CakePHP?

 History.

 Features.

 MVC in CakePHP.

 Naming Convention.

 Core concepts.

 Installing and running Cake.

Khalid Alharbi, © 2011 2

Contents Cont.
 Simple Cake Application.

 Database Cake Application.

 Bake Script.

 Layouts.

 Routes.

 Extending MVC Structure.

 Advanced Cake techniques.

 Cake Community.

Khalid Alharbi, © 2011 3

What is CakePHP ?
 According to the official CakePHP website, cakephp.org,

 “CakePHP is a rapid development framework for PHP
that provides an extensible architecture for
developing, maintaining, and deploying applications.
Using commonly known design patterns like MVC
and ORM within the convention over configuration
paradigm, CakePHP reduces development costs and
helps developers write less code”

Khalid Alharbi, © 2011 4

Khalid Alharbi, © 2011

History
 CakePHP was created by Michal Tatarynowicz On April

15, 2005.

  Inspired by Roby on Rails.

 Michal published it under MIT licence and opened it to
the community developers.

  In July 2005, Larry E Masters (aka PhpNut) took over as
the lead developer.

  In December 2005, Larry and Garrett J. Woodworth (aka
gwoo) founded the Cake Software Foundation to
promote development related to CakePHP.

Features
 It’s PHP! Compatibles with versions 4 and 5.

 Open Source, MIT license.

 Object Oriented.

 Design Patterns: MVC and ORM.

 Convention over configuration.

 Framework not set of libraries.

 Bake Script: Automates CRUD scripting.

Khalid Alharbi, © 2011 6

Features Cont.
  Scaffolding: single line view rendering.

  Helpers: standard HTML, Ajax, and JavaScript helpers to
create views.

  Customizable Elements: add elements as plugins into the
application.

  Input validation and data sanitization tools to help create
secure application.

  Search engine friendly URLs.

  Large growing active community.

  Extremely simple – It’s a piece of Cake!

Khalid Alharbi, © 2011 7

Khalid Alharbi, © 2011

MVC Pattern
 Cake enforces Model View Controller (MVC) Pattern.

 Cake splits operations into three parts:
 Models: used for all database interactions.
 Views: used for all output and displays.
 Controllers: used to control the application flow.

Khalid Alharbi, © 2011

How Does MVC Work? (I)
No MVC PHP App CakePHP MVC App

Maintenance
headache!
Doesn’t scale
well because
everything is in
the script.

How Does MVC Work? (II)
①  The client sends request.

According to the CakePHP convention, the URL looks like:
http://{Domain} /{Application}/{Controller}/{Action}/{Parameter 1, etc.}

②  The dispatcher script parses the URL, determines which controller to
execute, and forwards the request to the Controller.

③  The action (method) in the controller needs to access data, so it sends
a database request to the Model.

④  The model executes the database request, pulls the output,

⑤  The Model sends the output to the Controller.

⑥  The Controller sends the output to the corresponding view.

⑦  The View adds any design element to the output and sends it to the
client’s browser.

Khalid Alharbi, © 2011 10

Why CakePHP MVC ?
 Reduce redundancy.

 Organize the different tasks of the web app.

 No need for include statements in PHP scripts.

 Follow Agile techniques.

 Easy to debug and maintain.

Khalid Alharbi, © 2011 11

Cake Naming Convention (I)
 Cake adheres the idea of “convention over

configuration.”

 This organizes the operations of the web
application.

 It’s strongly recommended to follow Cake's naming
convention.

 More than one word in the name, must be
separated by _ when naming the file and camel
cases when naming the class.

Khalid Alharbi, © 2011 12

Cake Naming Convention (II)
 DB Table : Plural form in lowercase letters.

ex: orders.

 The MVC parts must be named as the following:

Khalid Alharbi, © 2011 13

File Name Class Name Base Class
Name

Location

Model Singular form of the
table name with .php
extension ex: order.php

!e "le name in a
Camel case. ex:
Order

AppModel /app/models

Controller tablename_controller
with .php extension. ex:
orders_controller.php

!e table name
appended
Controller. ex:
OrdersController

AppController /app/controllers

View !e action name in the
controller with .ctp
extension. ex: add.ctp

No classes; a view contains only
html tags and php scripts.

/app/views/
controllerName

Core Concepts
 Models and Associations.

 Controllers.

 Views.

Khalid Alharbi, © 2011 14

Models and Association (I)
 The model is the access point to a table in the DB.

 The model can contain data validation rules and
association information.

 Cake offers Object Relational Mapping (ORM) to
handle database relationships.

 Using Cake’s ORM, CRUD operations are done
without writing complex SQL queries.

 Relationships between tables are defined through
association.

Khalid Alharbi, © 2011 15

Models and Association (II)
 Association helps cake link between models

through relational mapping.

 Association types:
 hasOne: one-to-one relationship. ex: user “has one”

account.
 hasMany: a user “has many” posts.

 belongsTo: a post “belongs to” one user.
 hasAndBelongsToMany: a post “has and belongs to

many” tags.

Khalid Alharbi, © 2011 16

Controllers
 Controllers handle all logic and requests.

 Use functions like set(), and render() to call out the
views and provide it with variables.

 Use read(), and find() model’s methods to get a list
of fields from the database.

 Use the standardized array $this->data to
handle user form data in the view and runs it
through the Model.

Khalid Alharbi, © 2011 17

Views (I)
 Views handle the presentation layer and displays.

 Views contain HTML and PHP scripts.

 Views are associated with actions in the controller.

 When Cake launches an action in the controller, it
will automatically render the corresponding view for
it or display error.

 If the action in the controller is only called by
another action, then there is no need to create a
view for it.

Khalid Alharbi, © 2011 18

Views (II)
 When a user fills out a form, Cake places the form

data into the $this->data standard array.

 Cake parses the $this->data like the following:

 User-submitted data can be pulled from
$this->data array like any PHP array.
Ex: $this->data['Post']['date']['year’]

Khalid Alharbi, © 2011 19

Installing CakePHP (I)
 Before beginning, install these on your localhost:

  Apache server with mod_rewrite.
 PHP 4.3.2 or greater.
 MySQL (the default database engine in Cake) or you can

use any supported DBMSs: PostgreSQL, Microsoft SQL
Server 2000, Firebird, IBM DB2,Oracle, SQLite, ODBC, or
ADOdb.

 You can easily install all of these with XAMPP!

 Download the latest stable release version 1.3.8 of Cake
from http://cakephp.org.

 Extract the compressed package to your local host root.

Khalid Alharbi, © 2011 20

Installing CakePHP (II)
 You will end up with the following directories:

 /app contains all controllers, models, views, and
anything related to your application.

 /cake contains the cake’s libraries and scripts.
 /plugins contains plugins packages.
 /vendors contains other independent Cake scripts.

Khalid Alharbi, © 2011 21

Running CakePHP
 Before running:

 Change the /tmp folder permission to read and write.
 Change the security.salt value in app/config/core.php

 Create the database.
 Rename app/config/database.php.default to

database.php and edit the connection settings.

 Go to http://localhost/cakephp

Khalid Alharbi, © 2011 22

The Resulting Application

Khalid Alharbi, © 2011 23

The oven is ready!
Let’s put on the cooking hat and

bake our first cake ☺

Khalid Alharbi, © 2011 24

Hello World! (I)
 The required steps:

 Create the Model: /app/models/example.php

 Create the controller: /app/controllers/
examples_controller.php

Khalid Alharbi, © 2011 25

Hello World! (II)
 Create the view: /app/views/examples/index.ctp

 Running the app: navigate to http://localhost/
application_name/examples/index

Khalid Alharbi, © 2011 26

Blog Application (I)
 Creating a blog using CakePHP.

 The required steps:
1)  Create a new cake app in localhost root named blog.
2)  Create the blog’s database.
3)  Create five tables: users, posts, comments, tags,

posts_tags.
4)  Create the models and specify the association

relationship between them.
5)  Create the controllers and test the association using

scaffolding.

Khalid Alharbi, © 2011 27

Create the blog’s database (I)
 users table:

 posts table:

 comments table:

Khalid Alharbi, © 2011 28

CREATE TABLE `posts` (`id` int(11) unsigned NOT NULL auto_increment,
`name` varchar(255), `date` datetime, `content` text, `user_id` int(11),
PRIMARY KEY (`id`), FOREIGN KEY(user_id) REFERENCES users(id) ON DELETE
CASCADE ON UPDATE CASCADE);

CREATE TABLE `comments` (`id` int(11) unsigned NOT NULL auto_increment,
`name` varchar(100), `content` text, `post_id` int(11), PRIMARY KEY
(`id`), FOREIGN KEY(post_id) REFERENCES posts(id) ON DELETE CASCADE ON
UPDATE CASCADE);

CREATE TABLE `users` (`id` int(11) unsigned NOT NULL auto_increment,
`name` varchar(100), `email` varchar(150),`firstname` varchar
(60),`lastname` varchar(60),PRIMARY KEY (`id`));

Create the blog’s database (II)
 tags table:

 posts_tags table:

Khalid Alharbi, © 2011 29

CREATE TABLE `tags` (`id` int(11) unsigned NOT NULL auto_increment,
`name` varchar(100), `longname` varchar(255), PRIMARY KEY (`id`));

CREATE TABLE `posts_tags` (`id` int(11) unsigned NOT NULL
auto_increment, `post_id` int(11) unsigned, `tag_id` int(11) unsigned,
PRIMARY KEY (`id`), FOREIGN KEY(post_id) REFERENCES posts(id) ON DELETE
CASCADE ON UPDATE CASCADE, FOREIGN KEY(tag_id) REFERENCES tags(id) ON
DELETE CASCADE ON UPDATE CASCADE);

The naming convention for foreign
keys is: [singular table name]_id

Models and Association
  User Model: /app/models/user.php

  Post Model: /app/models/post.php

  Tag Model: /app/models/tag.php

Khalid Alharbi, © 2011 30

Controllers and Scaffolding
 Scaffolding is a technique for testing table

associations without needing to code any HTML.

 To add scaffolding to the application, define the
$scaffold variable in the controller.
 Posts Controller: /app/controllers/posts_controller.php

 Tags Controller: /app/controllers/posts_controller.php

Khalid Alharbi, © 2011 31

The Resulting Application (I)
 Navigate to: http://localhost/blog/posts/add

Khalid Alharbi, © 2011 32

The Resulting Application (II)
 Navigate to: http://localhost/blog/tags/add

Khalid Alharbi, © 2011 33

The Bake Script
 The bake script is a shell script that automatically

generates the basic elements of CakePHP.

 It saves a lot of time generating the needed
controllers, models, views, and unit tests.

 It helps understand how MVC works in Cake.

 It is located in cake/console/libs/bake.php

 Configuring and using the bake script is illustrated
in the following link:
http://www.screencast.com/t/Lyr5li6btec

Khalid Alharbi, © 2011 34

Callback methods
 Helps add special logic before or after actions are

executed.

 Cake supports callback methods for both controllers
and models.
 Controller callback methods:

 beforeFilter(), beforeRender(), afterFilter(),
etc.

 Model callback methods:
 beforeFind(), afterFind(), beforeValidate(),
beforeSave(), beforeDelete(), etc.

Khalid Alharbi, © 2011 35

Layouts
 Contain the overall design that wraps a view.

 Layouts files must be placed in /app/views/layouts
directory and named lowercase with .ctp extension.

 The variable $content_for_layout is used to
place the code for the views.

Khalid Alharbi, © 2011 36

Routes
 Mechanism that maps URLs to controller actions.

 Helps customize URLs and maintain the MVC
structure.

 Helps generate non-HTML files such as PDFs, RSS
feeds, etc.

 Cake comes configured with a default set of routes:
  Ex: Router::connect('/', array('controller' =>

'pages', 'action' => 'display', 'home'));

 Routing configuration file is located in:
 /app/config/routes.php.

Khalid Alharbi, © 2011 37

Extending MVC Structure
 Cake contains resources that extends the MVC

structure while maintaining its lightweight
organization.

 Cake has the following extensions:
 Helper: extends the View’s functionality.

 Component: extends the Controller’s functionality.
 Data Source: extends the Model’s functionality.
 Behavior: extends the Model’s functionality.

Khalid Alharbi, © 2011 38

Helpers
 Classes for the presentation layer to extend the

functionality of the views.

 Contain the presentation logic shared between views,
elements, or layouts.

 Simplify rendering HTML and processing forms.

 CakePHP has a set of built in helpers:
 HTML, Form, AJAX, Cache, JavaScript, RSS, XML, sessions,

Time, Text, etc.

  Ex:

 Ability to create custom helpers.

Khalid Alharbi, © 2011 39

<?=$html->link('Add a Post','/posts/add');?>

Components
 Used to extend the functionality of the controllers.

 Components are specific purpose shared actions
that can be used across all controllers such as
sending email, etc.

 Components are stored in the /app/controllers/
components directory.

 Cake comes with built-in components:
 Auth, Session, Cookie, Email, Security, etc.

 Ability to create custom controllers.

Khalid Alharbi, © 2011 40

Data Sources
 Connect to extra data-sources and provide data to

the models.

 Models can reference functions in the DataSource
without performing extra connections and data
handling operations.

 Cake comes with built-in DataSources that support
only relational database systems.

  Ability to create custom data sources and connect
to REST APIs.

Khalid Alharbi, © 2011 41

Behaviors
 Extend the functionality of models without writing a

set of functions in the models.

 Keep repetitive tasks in separate resource file and
allow models to access it.

 Example: when updating a record in the database,
perform many updates across the database.

 Cake comes with built-in behaviors: ACL,
Containable, Translate, and Tree.

 Ability to create custom behaviors.

Khalid Alharbi, © 2011 42

Utilities
 General-purpose libraries that can be called from

anywhere in the app through the App::import()
function.

 Cake comes with built-in utilities:
 Configure: storing global variables.

 File and Folder: managing file and folder operations.
 HTTP Socket: managing requests to web services.

Khalid Alharbi, © 2011 43

Plugins
 Mini-cake application inside other Cake app.

 Plugins are useful as third-party resources.

 Plugins contain models, views, and controllers just
like any Cake application.

 Plugins are droped into the app/plugins directory.

 No built-in plugins in Cake only third-party plugins.

 Ability to create custom plugins so they can be
used by other applications.

Khalid Alharbi, © 2011 44

Cake Community (I)
 Cookbook – http://book.cakephp.org

 Official CakePHP documentation.

 Bakery - http://bakery.cakephp.org
 Official CakePHP community portal.

 API - http://api.cakephp.org

 All questions at CakePHP- http://ask.cakephp.org
 Official questions and answers website.

 CakePHP TV - http://tv.cakephp.org
 Free video tutorials.

Khalid Alharbi, © 2011 45

Cake Community (II)
 CakeFest - http://cakefest.org

 The CakePHP conference.

 CakeForge - http://cakeforge.org
 Hosts open source CakePHP projects.

 CakePackages - http://www.cakepackages.com
 Free CakePHP code to download.

 GitHub – https://github.com/cakephp/cakephp
 Official CakePHP repository.

Khalid Alharbi, © 2011 46

References
 Beginning CakePHP: From Novice to Professional By

David Golding, ISBN: 1-4302-0977-1

 CakePHP Application Development By Anupom Syam
and Ahsanul Bari, ISBN: 9781847193896

 CakePHP 1.3 Manual Book, http://book.cakephp.org

 CakePHP after 3 years, looking back and moving ahead
by Gwoo
http://bakery.cakephp.org/articles/gwoo/2008/04/22/
after-3-years-looking-back-and-moving-ahead

Khalid Alharbi, © 2011 47

Thank You!

Khalid Alharbi, © 2011 48

