
CSCI 5448- Object Oriented Analysis and Design

By – Manali Torpe

OBJECT ORIENTED PROGRAMMING

USING C++

Fundamentals of OOP

 Class

 Object

 Encapsulation

 Abstraction

 Inheritance

 Polymorphism

 Reusability

C++ as an OOP language

 C++ : C with classes

 Multi-paradigm language

 As Object oriented language, it offers bottom to top approach

 As Procedural language, it offers top to bottom approach

Classes and objects (I)

 Class- user defined data type. Fundamental packaging unit of

OOP technology

 Class declaration is similar to struct declaration

 Keyword ‘class’ followed by class name.

 Object is an instance of class

 Object combines data and functions

 Object is created as a variable of class type using class name

 Members of class

 Data members / attributes

 Member functions / methods

Classes and objects (II)

 Structure of C++ program with class

Data members

 Data members can be any of the following types

 Primary data types : int, float, char, double, bool

 Secondary data types : arrays, pointers, class objects etc.

 Data members classified into two groups

 Regular : every object gets its own copy of data members

 Static: all objects share the same copy of data member

Static Data Members
 Variable declaration preceded by keyword ‘static’

 Only one copy of static variable is created. All the objects share the same
copy

 Initialized to zero when first object is created. No other initialization
permitted.

 Should be defined outside the class definition after declaring them
inside the class in this way – datatype classname :: varname

 They are normally used to maintain values that are common to the
entire class, e.g., to keep a count of number of objects created.

Methods (I)

 Function defined inside a class declaration is called as

member function or method

 Methods can be defined in two ways - inside the class or

outside the class using scope resolution operator (::)

 When defined outside class declaration, function needs to be

declared inside the class

Methods (II)
Method defined inside the
class

Method defined outside
the class

Methods (III)

 Types of functions in a class

 Regular functions

 Overloaded functions

 Inline functions

 Friend functions

 Static functions

 Constructors

 Destructors

 Virtual functions

Inline Function (I)

 It is a function defined with a keyword ‘inline’

 Compiler replaces the function call with function definition

 It can not be recursive

 It can not contain any types of loops

 It can not have switch cases or nested if’s

 It can not have static variable or goto statements

 Main() can not be inline

Inline Function (II)

 All the inline functions must be defined before the call,

because compiler needs to go through definition before

the call

Friend Function (I)
 Non-member function

 Has access to private and protected data of class. It gets the access
through declaration in the class with keyword ‘friend’

 It can be declared anywhere in class, i.e., private/public scope

 It has minimum one object of the class as its parameter because it
accesses data members with the object name

 It can not be called by an object, because it is not a member function

 One function can be friend of any number of classes.

Friend Function (II)

 Friend function example

Friend function (III)

 Uses of Friend function

 Useful when overloading certain types of operators

 Useful when two or more classes contain members that are

interrelated to other parts of program

 Enhances encapsulation. Only programmer who has access to

the source code of class, can make a function friend of that class

Friend Classes
 They are used when two or more classes need to work together

and need access of each other’s data members without making

them accessible by other classes.

Static and Const Member Functions

 Static member functions-

 Can have access to only static members of the same class

 Can be called using class name as –

classname :: functionname ();

 Const member functions-

 Function declaration followed by keyword ‘const’,

e.g., void put() const {statements……..}

 It ensures that it will never modify any data members

 Can be invoked for both const and non-const objects

Constructors (I)

 Special member function to initialize the objects of its class

 Automatically called when an object is created

 Data members can be initialized through constructors

 Have the same name of the class

 They can have any number of parameters

 Do not have return types, because they are called

automatically by system

 A constructor can only be called by a constructor

Constructors (II)
 Three types of constructors-

 Default constructors - constructor with no parameters. Compiler supplies
default constructor by itself if not defined explicitly.

 e.g. Circle() {} . In main function, Circle c.

 Parameterized constructors- constructors with parameters. Used for
initializing data members

 e.g. Circle(float x) {r =x;} . In main function, Circle c(3.5);

 Copy constructors- used when one object of the class initializes other object.
It takes reference to an object of the same class as an argument.

 e.g. Circle (Circle &x) { r=x.r;} .

 in main function, Circle c1(3.5); Circle c2=c1;

Constructors (III)
 Ways of calling the constructors-

 Implicit call – Calling the constructor by its object. we do not specify

the constructor name (Circle(3.5))
 e.g. Circle c(3.5);

 Explicit call – constructor is called by its name with parameters
 E.g. Circle c = Circle(3.5);

 Dynamic initialization – first memory is allocated to the object using

default constructor. Then parameterized constructor is called to
initialize data members

 E.g. Circle c; float x; cin>>x;
 c= Circle(x);

Destructors

 Special member function that is called implicitly to de-

allocate the memory of objects allocated by constructor

 Has same name of the class preceded by (~)sign

E.g. ~ Circle() {}

 Only one destructor in class

 Can never have parameters and cannot be called explicitly

 No return type

 Is called by itself when object goes outside its scope

 Called in reverse order of constructors

Function Overloading
 Functions with same name but different parameters

 All the functions are defined in the same class

 Binding is done during compile time

Operator Overloading (I)

 Mechanism in which we give an additional meaning to

existing operators when they are applied to user defined

data types e.g. objects

 When an operator is overloaded, its original meanings

are not lost

 Improves readability of code and increases scope of

operator.

Operator overloading (II)

 General rules of operator overloading-

 Only existing operators can be overloaded

 Overloaded operator must have at least one user defined

operator

 Operator function can not have default arguments

 All binary arithmetic overloaded operator functions explicitly

return a value

 Precedence of operators can not be altered. E.g. * has higher

precedence over +

Unary Operator Overloading (I)

 Unary operator acts on single operand(++,--)

 Can be overloaded either through non-static member

function or friend function

 Member function – takes no parameter. E.g. x.operator++()

 Friend function - takes one parameter. E.g. operator++(x)

 Increment(++) and decrement(--) have two versions, prefix

and postfix. To differentiate between them, a dummy

parameter of type int is used in postfix

Unary Operator Overloading (II)

Member function Friend function

Binary Operator Overloading (I)
 Binary operator is an operator that requires two operands e.g. +,-,=

 Member function –

 takes one parameter e.g. c.operator+(Circle x).

 Left hand side operand becomes calling object. R.H.S. becomes passing object.

 e.g. c=c1+c2; -> c = c1.operator+(c2);

 Left hand operand can not be primary data type as it can not call the function

 E.g. c=100+c1; //error because c=100.operator+(c1) not possible

 Friend function –

 takes 2 parameters. One parameter has to be user-defined data type. Other can be either
secondary or primary data type

 e.g. operator+(Circle c, int n)

 Both L.H.S and R.H.S. are passed as objects, L.H.S. as 1st parameter and R.H.S. as 2nd
parameter

 e.g. c=c1+100; -> c= operator+(c1,100)

 In case of one of the operands being primary data type, object may appear on either left or right
side of operator.

 e.g. C=100+c1; -> c=operator+(100,c1)

 Return type in general is the object of the class

Binary Operator Overloading (II)
 Assignment operators – e.g. =,+=,-=,*= etc

 Assignment operator functions do not return any value. Changes are
made in L.H.S. operand

 In case of friend function, first parameter must be an reference to the
object

 e.g. Speed operator+=(Speed &x, Speed y)

 s1+=s2; -> operator+=(s1,s2);

 If an object is assigned to another object at the line of declaration, then
copy constructor is called.

 E.g. Speed s1=s2;

 If it is done on the next line of declaration, then = operator is called.

 E.g. Speed s1;

 S1=s2;

Inheritance (I)

 It is a concept in which the properties of one class are

available to another

 The class that is being inherited is called as superclass or

baseclass

 The class that inherits the properties and functions of

base class is called as subclass or derived class

 Derived class inherits all the properties of baseclass

without making any changes to it. So facilitates code

reuse, hence reusability

Inheritance (II)
 An access specifier defines a boundary to member of a class.

 A class can have 3 types of member access specifiers:

 Private: members of class accessible only by members & friends of class. By

default, all members are private

 Protected: members of class accessible only by members and friends of

derived class.

 Public: members of class accessible by any function in the application

Inheritance (III)
 Base-class access specifier determines access status of base class members inside

derived class

 3 types of base class access specifiers:

 Private – all public, protected members of base class become private in derived

class. Inaccessible by derived class objects

 Protected – all public, protected members of base class become protected in

derived class. Accessible only by members and friends of derived class

 Public – public members become public in derived class, hence accessible by

derived class objects. Protected remain protected.

Inheritance (IV)

 Class can inherit properties of one or more classes or from

more than one level.

 Depending on the number of base classes and number of

levels, 5 Types of inheritance:

 Single inheritance

 Multilevel inheritance

 Multiple inheritance

 Hybrid inheritance

 Hierarchical inheritance

Single Inheritance

 Derived class has only one base class

 All properties of base class are available in derived class.

But vice versa not true

 Object of derived class can access all public properties of

base class

Multilevel Inheritance

 Derived class becomes base class to another class

 Here B is called intermediate base class

 All the public properties of A are available in C

 Private properties of A not accessible in C

Multiple Inheritance

 Derived class has more than one base class

 Derived class has all the public and protected properties

of all the base classes

 Each base class can be inherited with any visibility mode.

All are separated by a comma

Hybrid Inheritance
 Derived class has multiple base classes

 These intermediate base classes have a common base class

 To avoid getting multiple copies of common base class in the derived class,

intermediate base classes inherit the base class as virtual

 Hence only one copy of base class will be given in derived class

Hierarchical Inheritance
 Different derived class inherits one level of inheritance

 Additional members are added in each derived class to extend the

capabilities of class

 Each derived class serves as base class for lower level of classes

Constructors and Destructors in

Inheritance
 Single and multilevel inheritance – base class constructors are

called first, then derived class constructors are called
 E.g. class B : public A
 Constructor of A is called first, then of B.

 Multiple inheritance – base class constructors are called from left
to right as specified in derived class inheritance list. Then derived
class constructors are called.
 E.g. class C : public A, public B
 Here constructor of A is called first, then constructor of B is called

and then of derived class C

 Destructors are called in the reverse order of constructors

Encapsulation

 Means of data hiding

 Binds together code and data it manipulates and keeps both

safe from outside interference.

 Tells exactly what user can access and can not access through

public and private access specifiers

 Prevents hacking of code.

Function Overriding (I)

 Functions with same name and same parameters and same

return type

 Defined in base class and derived classes

 When derived class object calls the function, it calls

overridden function in the derived class

 When base class object calls the function, it calls the base

class copy of the function

Function Overriding (II)
 Example of function overriding

Virtual Functions (I)

 Member function preceded by keyword ‘virtual’ in base class

and overridden in derived class

 If object of base class invokes virtual function, then copy of

base class is invoked and if derived class object invokes it,

then copy of derived class is invoked.

 Virtual functions are declared to specify late binding.

 When base class pointer points at derived class object, c++

determines which copy to be called depending upon the type

of the object at run time

 They are resolved at run time not at compile time

Virtual Functions (II)

 General rules while defining virtual function:

 Must be member of some class

 Accessed using object pointers

 Can be friend of another class

 Prototype of base class and derived class virtual function must

be identical

 No need to use keyword ‘virtual’ in definition if its is defined

outside the class

 Can not be a static member

Polymorphism (I)

 Function overriding with base class function declared virtual

 Always needs to be called with base class pointer or reference

 When derived class object is assigned to base class pointer,

base class pointer will access the overridden derived class

function during run time

 This is know as run time polymorphism / dynamic binding

Polymorphism (II)
 Example of polymorphism

Pure Virtual Function
 Virtual member function of base class without definition and

forces derived class to give definition for it

 Should be overridden in all the derived classes

 Is initialized to 0. “=0” indicates that code for the function is
null pointer.

 E.g. class Shape

 { virtual void area() = 0;

 };

 If derived class fails to provide definition for the function,
then it becomes an abstract class and instance of it can not be
created then.

Abstract Class (I)

 Contains at least one pure virtual function

 Object of abstract class can not be created, because it

contains one or more pure virtual functions without

definition.

 A reference or pointer can be created to support run

time polymorphism

 All the pure virtual functions of abstract class must be

overridden in derived class.

 Can be used to create generic, extensible libraries for

programmer to use in their own implementations

Abstract Class (II)

 Example of abstract class. Similarly, another sub class Triangle

can also be added.

Overview
 We learnt the basics of object-oriented programming using

C++ language

 Following key features were explained with examples:

 Inline functions

 Friend functions

 Operator overloading

 Inheritance

 Encapsulation

 Polymorphism

 Virtual functions

 Abstract class

