
Drupal
The Inner-Workings

Ari Summer
CSCI 5448
Graduate Presentation
11/16/2012

What is Drupal?

● Drupal is an open source content management platform
● Allows you to easily build a website with many tools for

customization
● It is similar to a framework in that:

○ Model-View-Controller architecture
○ User can create custom data types without creating database

tables manually
○ User can query database any way they like using the Views

Module
● Drupal is different from a framework in that it provides a

user interface that saves the user from writing tons of
code

● Trading Flexibility for Usability

Before we go any further...

● Although Drupal does not extensively use
PHP's class system, it utilizes many Object-
Oriented fundamentals and techniques
○ At the time of implementation, PHP's class system

was not mature enough for Drupal
■ This is changing with the introduction of PHP5. Drupal is

beginning to use PHP5's class system more and more.
○ With the PHP class system the dynamic inclusion of

files would have been much slower and/or included
massive amounts of logic (Not Cool!)

Modular Design

● Drupal functionality comes from the installation of
modules and themes for customization
○ Even much of the Drupal "core" is made from installed modules

● Drupal's core is isolated from third-party contributed
modules and themes

● Extends Drupal's functionality without changing Drupal's
core files

● Allows for clean upgrades and less problems when
changing your web design

http://drupal.org/project/omega

http://drupal.org/project/Modules

http://drupal.org/project/omega
http://drupal.org/project/omega
http://drupal.org/project/Modules
http://drupal.org/project/Modules

Module Examples

● Drupal for Facebook: "This set of modules turns Drupal into
a platform for developing Facebook Applications. This allows you to embed
your content and features within facebook, or allow facebook users onto
your site via Facebook Connect."

● Quick Tabs: "The Quick Tabs module allows you to create blocks
of tabbed content, specifically views, blocks, nodes* and other quicktabs*.
You can create a block on your site containing multiple tabs with
corresponding content. "

● Backup & Migrate: "This allows you to easily dump the sites
database minus cache tables which is great for migrating the site across
environments. It is also great for scheduled backups that run on cron runs."

● Flag: "Using this module, the site administrator can provide any
number of flags for nodes, comments, users, and any other type of entity.
Some possibilities include bookmarks, marking important, friends, or flag
as offensive..."

https://developers.facebook.com/docs
https://developers.facebook.com/docs/guides/web/#login

Model-View-Controller (MVC)
● Drupal uses the MVC architecture when using the Views

Module in order to display data and react to changes.
○ Similar to that used in Ruby on Rails

● Some people say Drupal is PAC and there seems to a be a
lot of confusion about the difference between MVC and PAC.

● Larry Garfield has a detailed explanation about why he thinks
Drupal is a PAC architecture, but this was written in 2006.

● With the newer Views Module, it is arguable that Drupal's
architecture is closer to MVC according to the classic
definition.

● Some people seem to think that in MVC, the view can speak
directly with the model and others do not.

● The terms MVC and PAC are often times loosely used, but
the main point is that the model, view, and controller are
separate from each other creating a modular design

http://www.garfieldtech.com/blog/mvc-vs-pac

MVC Architecture

● Either way...
○ Model: Represents data

and rules to manipulate
that data

○ View: Queries database
and displays data

○ Controller: Notifies View
and Model of changes

● In Drupal:
○ Model: Database and

Nodes
○ View: Theme and Views

Module
○ Controller: Web Browser

and Menu System http://en.wikipedia.org/wiki/File:MVC-Process.png

http://en.wikipedia.org/wiki/File:MVC-Process.png
http://en.wikipedia.org/wiki/File:MVC-Process.png

MVC vs PAC

● MVC and PAC are similar but there is a
distinct difference

● In MVC, the View is allowed to talk to the
Model in order to retrieve information

● In PAC, the Presentation (View in MVC)
cannot talk directly to the Abstraction (Model
in MVC).
○ The Presentation only speaks directly to the

Controller as does the Abstraction
○ Therefore, the Controller acts as the middleman

MVC in Drupal

● The menu system acts as the Controller
● Data is stored in "nodes" which is the Model
● The View consists of the Theme system and

its associated Views and Blocks
● Views and Blocks can easily be created

using the interface without writing any code

Views

● View - Some presentation of content
○ This is usually used to display the main content on a page such

as Blog Posts
● The Views Module is a very popular module and allows

you to create Views with a user interface
○ This module's output is SQL-queries which pull info from the

database to display the desired content to the user
● Views contain Fields, Filters, Sort Criteria,

Relationships, etc. to sort and display data.
● Views can be displayed in Page or Block form
● Page Views are assigned a URL paths and are usually

the primary content of a page
● Blocks will be discussed on the next slide

Blocks

● Blocks can be generated by using the Views
Module, writing your own HTML, or installing
other modules that come with pre-made
blocks

● These usually consist of secondary content
and are often on many pages on the website

● Blocks system provides a user interface that
allows you to place blocks in specific areas
based on your theme

● Examples: Facebook Like Box, Menus,
Login

Image: http://www.bugtreat.com/blog/how-to-add-a-facebook-like-box-to-your-blog/

http://www.bugtreat.com/blog/how-to-add-a-facebook-like-box-to-your-blog/

Page Layout

View

http://drupalwatchdog.com/1/2/stacking-up-drupal

Nodes

● Nodes are essentially objects that contain data
○ Methods for Nodes are contained in node.module
○ Store most content on a Drupal site

● Nodes can be of different Content Types such as a
Page, Blog Post, story, article, etc.

● It contains information or "fields" such as the Author,
Date, Title, and Description.

● Node module allows you to list, sort, manage, and
configure Content Types.

● The Content Construction Kit (CCK) Module allows for
customization of Content Types

User "Objects"

● Users are also objects in Drupal
● These objects contain data such as profile information,

session tracking, and privileges.
stdClass Object

(
[uid] =>
[name] =>
[pass] =>
[mail] =>
[mode] => 0
[sort] => 0
[threshold] => 0
[theme] =>
[signature] =>
[signature_format] => 0
[created] => 1268923269
[access] => 1279119654
[login] => 1278690259
...}

● uid - User ID
● name - User name
● pass - Encrypted password
● mail - User current email address
● theme - Name of the theme shown for this user (no longer

changeable in core but can be in contrib)
● signature - Signature as set in the user account settings
● signature_format - Text format to apply to signature
● created - Unix timstamp for when the account was created
● access - Unix timstamp of the last time the user accessed the site
● login - Unix timstamp of the last successful login by this user
● status - 1 if the user is active, 0 if blocked
● timezone - User's timezone as a PHP compatible timezone string

(date_default_timezone_set())

● language - User's language code

● picture - User picture / avatar

● init - Contains the email address the user provided during initial
registration

● data - Data stored in the users table by contrib modules (second
argument of user_save())

if ($user->uid == 0) {
 //user is not logged in
}

http://php.net/date_default_timezone_set
http://api.drupal.org/api/drupal/modules%21user%21user.module/function/user_save/7

Other Objects

● From a Users perspective, modules and
themes can also be thought of as Objects

● Modules contain functions or methods and
utilize the hook system to perform tasks and
pass messages

Visual Representations

http://drupal.org/getting-
started/before/overview

http://www.palantir.net/sites/default/files/general/images/matw-1_0.png

Common OO Fundamentals in Drupal
● Drupal uses many OO fundamentals in its

design
○ Abstraction
○ Encapsulation
○ Polymorphism
○ Inheritance

● It also uses many Design Patterns defined
by the Gang of Four
○ Decorator
○ Observer
○ Bridge
○ Chain of Responsibility
○ Command

Abstraction

● The hook system in Drupal provides the
abstraction

● Contract: when a module implements a
certain hook, it will perform a specific type of
task

● Caller does not need to know anything about
callee or the way in which the hook is
implemented during invocation

Hooks

● Module system is built on "hooks" which are
PHP functions

● In order for Drupal to utilize modules and for
modules to call other modules, they
implement hooks.

● When an action occurs where a hook is
used, all modules implementing this hook
get called.

function nice_try(){
 drupal_set_message(t('Nice try, sucker'),
$type = ‘error’); // display this message
 drupal_goto(); // reload the current page
}

Encapsulation

● In order to provide protection, Drupal relies
on convention.

● Private methods inside modules are prefixed
by an underscore. Public methods have no
underscore.

● There is no strict implementation in the
Drupal system that limits access to data
within some object. Yikes!

● In my opinion, this is a weakness of Drupal,
but that is up for debate

Polymorphism

● Nodes in Drupal are very much polymorphic
● When methods are called on Nodes, we can

treat them the same way, but get the
behavior appropriate to each specific node.

● For example, node_build() follow by
drupal_render() will give an HTML
representation of a Node
○ The implementation of the rendering may vary with

the type of Node.

Polymorphism Continued

● Themes are also polymorphic.
● Each Theme can be told to render and

display a node using the same interface and
methods

● However, a specific theme will render a node
differently depending on the Theme
implementation.

Inheritance

● Modules and Themes are essentially classes
that inherit behavior from their abstract base
classes

● They can override the default behavior of the
base class and add additional behavior

● Themes: can override default renderings
● Modules: can override hooks and decide

which ones to implement

Design Patterns: Decorator

● This pattern allows for an
object's functionality to be
extended at run-time

● Using the hook system, a
module can extend
another modules
functionality

● No subclassing necessary
● Example: Upload module

could add an image to a
node module

http://en.wikipedia.org/wiki/File:Decorator_UML_class_diagram.svg

http://en.wikipedia.org/wiki/File:Decorator_UML_class_diagram.svg
http://en.wikipedia.org/wiki/File:Decorator_UML_class_diagram.svg

Design Patterns: Observer

● The Observer pattern allows Objects to become Observers
of Subjects on which they depend
○ Allows for Objects to update their state when necessary

● The Observer Design Pattern exists within the hook
system.

● By implementing a hook, a module will become an
observer of another object.

● When a change occurs in the subject object that is related
to a hook, the observer implementing the hook will be
notified.

● Examples: hook_node_load(), hooke_node_login()

Design Patterns: Visitor

● Similar idea as Observer but provides
operations to perform on subject

● "The Visitor pattern represents an operation
to be performed on the elements of an object
structure without changing the classes on
which it operates"

● For example, hook_node_view() allows
modules to perform operations on a node to
view it, but does not change the node class
on which it operates.

Design Patterns: Bridge

● Drupal uses a Database Abstraction Layer that utilizes a
design similar the the Bridge Pattern.

● When getting information, Modules use this abstraction
layer.

● They do not query directly on the database.
● This allows Modules to be independent of the database

system implementation
● New databases can be added easily

http://en.wikipedia.org/wiki/Bridge_pattern

http://en.wikipedia.org/wiki/Bridge_pattern
http://en.wikipedia.org/wiki/Bridge_pattern

Design Patterns: Factory

● In addition to providing a common Database
Abstraction by using the Bridge pattern, the
Factory Pattern is used to return the correct
Object for a given Database without the user
knowing

● For example, when calling an Insert Query
command using db_insert, caller does not
decide whether InsertQuery_mysql or
InsertyQuery_pgsql
○ This is Factory's job

Design Patterns: Command

● The Command Pattern encapsulates all data
needed to execute operations at any time
within an Object

● The InsertQuery object is an example of the
Command Pattern
○ Contains the operations executed on the Database

within InsertQuery
● Increases usability and flexibility

○ Can be saved for later execution
○ Hooks can edit the query easily before executing

● Drupal could use this for undo operations but
does not currently

Design Patterns: Chain of
Responsibility

● Objects can send a command up a "chain"
without knowing what object(s) will handle it
○ Objects handle the request, pass it on, or both

● When the menu system receives a page
request, it passes this request up a chain to
determine how to handle this request and
what modules will be called.

Conclusion

● Drupal is a great system for getting websites up and
running fast

● It is still being developed and improvements are being
made

● Drupal is a large complicated system and much is
abstracted away from the user
○ It is often difficult to know what exactly is going on

under the hood
○ Trades flexibility for usability

● Drupal is its own animal and it is often difficult to place a
name on some of the design principles used
○ Many of them are different than the classical sense

My first website using Drupal...

Works Cited
● http://www.garfieldtech.com/blog/mvc-vs-pac
● http://views-help.doc.logrus.com/help/views/about
● http://inspiredm.com/drupal-terminology-nodes-blocks-and-views-oh-my%E2%80%A6/
● http://drupal.org/documentation/modules/node
● http://api.drupal.org/api/drupal/developer%21globals.php/global/user/7
● http://api.drupal.org/api/drupal/includes%21module.inc/group/hooks/7
● http://www.mccormickandwinter.com/blog/drupal-hooks-explained
● http://en.wikipedia.org/wiki/Decorator_pattern
● http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
● http://www.oodesign.com/decorator-pattern.html
● http://www.oodesign.com/command-pattern.html
● http://en.wikipedia.org/wiki/Command_pattern
● http://www.oodesign.com/chain-of-responsibility-pattern.html
● http://sourcemaking.com/design_patterns/visitor
● http://drupalwatchdog.com/1/1/design-patterns-of-drupal

http://www.garfieldtech.com/blog/mvc-vs-pac
http://www.garfieldtech.com/blog/mvc-vs-pac
http://views-help.doc.logrus.com/help/views/about
http://views-help.doc.logrus.com/help/views/about
http://inspiredm.com/drupal-terminology-nodes-blocks-and-views-oh-my%E2%80%A6/
http://inspiredm.com/drupal-terminology-nodes-blocks-and-views-oh-my%E2%80%A6/
http://drupal.org/documentation/modules/node
http://drupal.org/documentation/modules/node
http://api.drupal.org/api/drupal/developer%21globals.php/global/user/7
http://api.drupal.org/api/drupal/developer%21globals.php/global/user/7
http://api.drupal.org/api/drupal/includes%21module.inc/group/hooks/7
http://api.drupal.org/api/drupal/includes%21module.inc/group/hooks/7
http://www.mccormickandwinter.com/blog/drupal-hooks-explained
http://www.mccormickandwinter.com/blog/drupal-hooks-explained
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Decorator_pattern
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
http://www.oodesign.com/decorator-pattern.html
http://www.oodesign.com/decorator-pattern.html
http://www.oodesign.com/command-pattern.html
http://www.oodesign.com/command-pattern.html
http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern
http://www.oodesign.com/chain-of-responsibility-pattern.html
http://www.oodesign.com/chain-of-responsibility-pattern.html
http://sourcemaking.com/design_patterns/visitor
http://sourcemaking.com/design_patterns/visitor
http://drupalwatchdog.com/1/1/design-patterns-of-drupal
http://drupalwatchdog.com/1/1/design-patterns-of-drupal

