UNIFIED MODELLING LANGUAGE (UML)

An Overview of Diagram Types used in the
Standard Object Modeling Language UML 2.0

What is UML?

Standard general-purpose modeling language
designed for OO software engineering

Used to create visual models of object-
oriented software-intensive systems

Developed by the Object Management Group

(OMG) and added to official technologies in
1997

It fuses multiple methodologies into one
common modeling language

Prior to UML:

Several popular techniques:
— The Booch method (Booch, 1993)

— The Object-Modeling Technique (OMT)
(Rumbaugh et al, 1991)

— Object-Oriented Software Engineering (OOSE)
(Jacobson, 1992)

— “The Three Amigos” led an international
consortium, UML Partners, in development of
UML 1.1 (November 1997)

UML 1.x

* The best ideas from the Three Amigos and the
international consortium were combined into
one standardized form

* Concepts from other OO methodologies were
also incorporated to create a broad set of
modeling methods and graphical tools

e UML s an international standard
ISO/IEC19501:2005

UML 2.x

Four Parts to the UML 2.x Specification:

1. The Superstructure defining the notation and
semantics for diagrams and their elements

2. Infrastructure defining the core meta-model
(Meta-Object Facility — MOF used in model-
driven engineering)

3. The Object Constraint Language (OCL)

UML Diagram Interchange — how diagram
layouts are exchanged

Diagram Types

 There are 13 official diagram types

 Two Conceptual Views:

— Structural (static): description of system
architecture underlying the design

— Behavioral (dynamic): description of how the
pieces of the system interact with each other

* Most Commonly Used
— The Class Diagram (static/structural)
— The Sequence Diagram (dynamic/behavioral)

UML 2.2 Diagram Types:

Diagram Types

Diagram

Structure Diagram
(Static)

JAN

Class Diagram *

Component Diagram

Composite Diagram

Deployment Diagram

Object Diagram

Package Diagram

Behavior Diagram
(Dynamic)

JAN

I

Activity Diagram

State Machine
Diagram

Interaction Diagram

Use Case Diagram

JAN

Communication
Diagram

Sequence Diagram *

Timing Diagram

Class Diagram (structural)

Describes the types of objects in a
system and the relationships
between them

Class Diagram

Most common diagram with the widest range of
variation from simple to complex

It can be used as simple high level overview to a
detailed definition including attributes/methods

Because we have already covered this in lecture, |
am only going to provide a summary of notation

Much of the class notation is used in other
diagram types

Class Diagram Notation:

Class Definition Examples:

Instance Specification:

Interface Specification:

S i object name: ClassName ST e
Interface
Class Name Association:
[+-]attribute: Type[0..1] = initialValue i
. . role o
[+-]operation(arg list) : return type Class A e Class B
abstract operation roie o
Generalization/Inheritance Example:
Class Class
|
|
Supertype l
Zﬁ Association Class
| Association:

Qualified Association:

Subtype1

Subtype 2

Class

qualifier

Class Diagram Notation (continued)

MULTIPLICITIES
4 Aggregation
Class Exactly 1 Class >
* Class Many (zero or more) P o Composition
0.1 Class Optional (zero or one)
Note
m..n . -
Class Numerically specified
Dependency:
{ordered} * Class Ordered Client ~ f-—————- = Supplier

Package Diagram (structural)

Structural overview of how the
components of a system are
organized into higher-level units

Package Diagrams

Allows you to group any set of UML
components into higher-level units

Most commonly used to show how classes are
organized into packages

Hierarchical structure allows packages to be
broken down into sub-packages and classes

i“a,,”

They are denoted using to separate levels
of the hierarchy (e.g. Java..utll..Date

Package Notation

Package Notation (e.g. java::util::Date)

Java util util
et |)
Date
util Date

Contents listed in box Contents diagramed
Java

java::util —
' util
E—

java::util::Date

Date

Date

Fully Qualified Class

Fully Qualified

Package Name Nested Packages

Package Diagrams

Primarily used to show packages and their
dependencies

|deally, this package dependency diagram is
generated by the system itself so that you can
view an accurate representation of dependencies

Good package structure has a clear flow of
dependencies

Circular dependencies are not recommended and
should be minimized

The more dependencies coming into a package,
the more stable the package interface should be

Package Diagram

Package Diagram Example

]
Finance
I | 1
N
Mainframe |e....... Business
' 'ﬂ Interfaces % Interfaces
Ve
Reservation e
— Y
]
Persistance
Resource

Composite Structure Diagram
(structural)

Allows complex objects to be broken
down into run-time groupings

Composite Structures

New feature for UML 2.0

Allows you to take a complex object and break
It into parts

The difference between packages and
composite structures

— Packages are compile time groupings

— Composite structures are run-time groupings

This feature is new and so there isn’t much
information yet about how useful this is

Composite Structure Example

This example shows run-time components of a
classic Fibonacci sequence:

FibonacciSystem

Variable o O

: FibonacciFunction
[

—

[_
indvar2 indvar1 depvar viewy
var var var
L . Wi *
/HMinus2 || / NMinus1 N +Viewer [0.]

I - IvVar

var

Component Diagram (structural)

Diagram showing the structural
relationships between the logical
components of a system

Component Diagrams

Main purpose is to show structural relationships
between logical components of a system

It has more to do with analyzing customer
expectations & marketing decisions than the
actual technology

Customers often want to purchase or upgrade
logical entities in a system separately

Component: a logical unit connected through
implemented and required interfaces

They are integrated into the standard structure
of the class diagram and often utilize notation
from composite structure diagrams

Do Components Exist?

This quote sums up confusion among technologists
about what components are and suggests how
component diagrams are used as part of the design:

Components are not a technology. Technology people seem to find
this hard to understand. Components are about how customers want
to relate to software. They want to be able to buy their software a
piece at a time, and to be able to upgrade it just like they can upgrade
their stereo. They want new pieces to work seamlessly with their old
pieces, and to be able to upgrade on their own schedule, not the
manufacturer’s schedule. They want to be able to mix and match
pieces from various manufacturers. This is a very reasonable
requirement. It is just hard to satisfy.

Ralph Johnson http://www.cs.com/cgi/wiki?DoComponentsExist

Component Notation/Example

Component Diagram

Inventory System Inventory System | Order System
UML 1 notation UML 2 notation 1 Uses
v

Inventory System

Deployment Diagram (structural)

Shows the physical layout of the
hardware and software in a running
system

Deployment Diagrams

It contains nodes connected by communication
paths

Nodes are either specific hardware or execution
environments that host the software

Artifacts contained on nodes include:
executables, libraries, data files, configuration
files, HTML Documents...

Including an artifact in the node indicates that it
is part of the deployment in a working system

Deployment Diagram

Web Server
Browser

[‘:I Apache
Adobe <— HTTP(S) —|
Flash

l:l:l mod_jk

User ?
AJP
Database Server Application Server
Tomcat

MySQL <——JDBC —> Elj Serviet

E|:| Application

Object Diagram (structural)

Diagram showing an overview of
objects at a particular point in time — it
IS an example instantiation derived
from the class diagram

Object Diagram

e Commonly referred to as an “instance
diagram”

e Useful to show sample configurations of
objects in the working system and clarifying
the class diagram

* Uses instance notation:

Instance name : class name

Object Diagram

Class Diagram & Corresponding Object Diagram

Patient

-lastName
firstName
-insurance

Schedules >

Appointment

+makeAppointment()
+proviceHistory()

0.*
1.
Symptom
-name
-date

Joe Williams: Patient

Blue Cross/Blue Shield

-time
-date
-reason

Doctor

+getNextAppointment()

Appt1: Appointment

time 3pm
date 12/12/2012
reason: sore throat

Symptom2: Symptom

Fever

Symptom1: Symptom

Sore Throat

Jane Smith: Doctor

Sequence Diagram (behavioral)

A graphical description of the main
success scenario described in the use
cases for the system

Sequence Diagram

Captures how objects interact with one another
in a particular system scenario

Interactions are shown along a lifeline that runs
vertically from top to bottom

It shows the instantiation of objects used in the
scenario and the messages that are exchanged
between them

Creation of the object is indicated with an arrow
along the timeline pointing to the box

Deletion is indicated by an “X” crossbar when the
object gets deleted

Overview of Basic Notation

sd submit_oomments/

lifeline «serv|et»
WRServIet
window «javascript»
:Comments
gate
. I | object creation
validate() - Message

synchronous j validate() - I
message]

. \ | icr_ea_tez) «ajax» I
execution :Proxy I
specification > | occurrence

a specification «ajax» [|
return /‘ «ajax»
message N < T -

asynchronous
= — — S — — y

/—-I> | message
gate I
<——— ==
«callback» errors
1
duration ! !
constraint !

destruction
occurrence
specification

> ref Handle Errors

interaction use | I

When to Use Sequence Diagrams

* Useful for looking at how objects interact in a
single scenario

* |t provides a broad picture of interactions, but
does not provide detailed definition of specific
oehavior within the interaction

* |f you want to look at details of complex
oehavior or interactions across multiple
scenarios, sequence diagrams will NOT work
well.

Use Case Diagram (behavioral)

A graphical description of the main
success scenario described in the use
cases for the system

What is a Use Case?

Use cases depict a set of scenarios organized around a
common user goal

Scenario: a sequence of steps describing an interaction
between the user and the system

Each step in the use case is a simple statement that
clearly defines who is carrying out the step

There can be multiple actors participating in a single
use case (human or technological)

Too little information is preferable to too much detail

Overly detailed use cases don’t get read whereas
simple use cases & use case diagrams are useful for
discussion

Example Use Case

Content:

Submit Work Report
Goal Level: Sea Level

Main Success Scenario:
1. Create a new account (if new volunteer)
2. Login
3. Create Report
1. Enter detail fields
2. Upload photo (optional)
4. Submit Report
5. Forward Copy to Team mates

Extensions:

1a: Review and consent to volunteer agreement

Description:
e Title
 Detail Level

e High level steps in common success
scenario

* Lower level detail worth noting

What is a Use Case Diagram?

* A graphical representation of the main success
scenario(s)

e |t acts as a table of contents for the use case set
or a high level picture of the individual use case

e A. Cockburn: Writing Effective Use Cases (2001)
suggests scheme for defining level of use cases:

— Sea Level: Primary High Level Overview Level
— Fish Level: Detailed definition below Sea Level

— Kite Level: How use cases fit into broader business
level interactions

Example Use Case Diagram

Use Case Diagram ° Th ree aCtOrS
— 2 human
— 11— — 1 system
> Login >
S ——>
New Volunteer <<System>>
=/ Submit Report _—z\—>

volunteer
coordinator

State Machine Diagram
(behavioral)

In OO state machine diagrams are
used for a single class to show the
lifetime behavior of an object

Parts of a State Machine Diagram:

Initial pseudostate (state at creation) is indicated using a
solid dot and arrow

Arrow transition indicates movement to another state

Transition label and its parts are optional (trigger-signature
[guard]/activity)

States can react to internal events as well (putting the
trigger event, guard, & activity in the state itself)

States can indicate entry or exit activities within the state
definition

States can be idle or occupied in some ongoing work
Titled boxes can be used to indicate a super-state

End-state of the object is indicated by solid dot with circle

Example State Diagram

/ calculatePrice

—

— |

Initiated Pre-reserved

"
|
Confirmed

:

In progress

:

Done

'

Q.

Example with Super-state

Enrollment

Proposed

Scheduled

Open For
Enroliment

student dropped
[seminar size > 0]

classes
end

Closed to
Enroliment

student dropped

[seminar size = 0]

cancelled

Enrollment: Super-state definition

When to Use State Diagrams

Useful for describing the behavior or an object
across several use cases

It is useful for showing the lifecycle of an
individual object

It is NOT useful for describing objects that
collaborate with one another

It can be combined with interaction and
activity diagrams to provide useful detail

Activity Diagram(behavioral)

Used to describe procedural logic,
business process, and work flow. They
are particularly useful for documenting

parallel behavior

Activity Diagram - Overview

Significantly extended and modified between UML 1.x
and UML 2.x

In UML 1.x they were positioned as a special case of a
state diagram, In UML 2.0 this distinction was removed

It is particularly useful for documenting concurrent
algorithms and parallel processing

They aren’t used much, but may be particularly useful
where there are instances of parallel processing

They are sometimes used to document use cases, but
they may not be the best way to communicate with
domain experts

Activity Diagram — Components

Action: each box in activity diagram represents an
action

Initial node: indicated with the dot/arrow notation of
state diagrams

Fork: one incoming flow and several outgoing flows

Join: used to synchronize flow when parallel actions
are complete

Decision: conditional behavior delineated by the
decision

Merge: marks the end of the conditional behavior

Example Activity Diagram

.—)C ,_S‘elect Site HCr?ate Plan)(—
: ™= n st ~,,'-—--‘.'/’ rejected

||||||||||||||||

ent lork s \
(Paint)(Furnish)

~ W

—(— — Move In)_>©

——— —h swimlane

\ —_—
"
ATM Machine Bank
Partitions (Swim Lanes) S
Partitions can be used to show the
distributions of activities across Enter pin >{ Authorize
multiple actors activ-ity) suard expression Thatid ping

[Invalid PIN]

read, but useful if the purpose of the
diagram is to show who specifically
does what action

[balance < amount]

[balancg >= amount]

branch 4— —-—""\/
. . Vs
The can be a little more difficult to (E“‘e' ‘"‘°“"‘} {Check account balan@
y

fork —-} —
(Take money from slog {Debit account)

—— join

Show balance

Eject card

end

Ohed

Additional features

* Hourglass symbol can
be used to indicate
timing elements such as
dates or timers

* Send Signals (e.g. exit
robot)

e Activities can be broken
down into sub-activities
using box notation (e.g.
ShudownRobot)

/ShutdownRobot \

[robot process still exists]

[else]
sig Kill

free resources

\ dead robot /

UML 2.0 activity diagram
Real TimeBattle Robot Lifecycle: Robot Shutdown

Project: | realtimebattle.sourceforge.net W

Authors: | Johannes Nicolai, Christian Holz, Falko Menge

Interaction Overview Diagram
(behavioral/interaction)

A merging of activity diagrams and
sequence diagrams

Activity boxes replaced by sequence
diagrams where more detail is needed

Example of Interaction Overview:

i

ref/ Validate/Approve Comment

[validation errors]

<&

\k [no validation errors)

(_

sd Post Comments)
«javascript» sjavascripts «service»
“Window “l P ‘PluckRequest , :
:Comments Batch :PluckService
«callback» | I I |
—® 1 post_comments() |
—® T BeginRequest()
coreate) [cajaxs I
:Proxy |
«ajax» I |
postComments()
< _______ L
{1s..4s} I I —_—————
L | | «jsony .
-4
I «callback» | I
l |
e\ [errors]
/ w/
[no errors]
ref/ Handle errors from Pluck

)

ref) Request all comments

T

{10..100ms}

X

Communication Diagram
(behavioral/interaction)

Emphasizes the data links between
participants in a particular
Interaction

Communication Diagram

Similar to sequence diagrams without lifeline and
sequence of messages

Communication diagrams use simple line
notation and numbering scheme to show
sequence

Transient links can be noted using <<local>>,
<<parameter>> and <<global>> (not in UML2, but
still in common usage)

Most people prefer sequence diagrams, but
useful for simple white-board discussion or when
you want to focus on links

Example Communication Diagram

f create() —p»

Customer

: Order Gastow : Order 117 gettotald : Orderltem
Checkout 1.2: = 3.1: getinfoQ—| —
orderTotal := | | -
calculateTotal{ 1.1.1: getPrice
2: debit0+ - {(humberOrdered)
3.1: getinfoo’ 3.1.1: getlnfoot
Credit 3: display0| : Checkout
Card W : Item
Payment ~aye
2.1: reserve() —m | . Payment
2.2: commit(}—m | Processor
<<system>>

Timing Diagram (behavioral/
interaction)
Diagram focusing on timing

constraints for one or a group of
related objects

Example Timing Diagram

Lifeline State or condition DurationConstraint

yd

{d .3%d} ‘
:User Idle>< WaitCard XWaitAccess |dle

N

sd UserAcc_User J

Crossed lines indicate a change of state

Timing diagrams are not commonly used

Additional Resources for UML and
Object-Oriented Design:

Fowler, M. UML Distilled (Third Edition, 2004) —
good overview of UML language

Larman, C. Applying UML and Patterns (2d ed 2001)

Rumbaugh, J., Jacobson, I. and G. Booch The Unified
Modeling Language Reference Manual (1999)

Dennis, A., Wixon, B. H., and D. Tegarden System
Analysis Design: UML Version 2.0 An Object
Oriented Approach (2009)

