
OBJECT-ORIENTED

PROGRAMMING IN C

Pritha Srivastava
CSCI 5448

Fall 2012

Introduction

 Goal:

 To discover how ANSI – C can be used to write object-

oriented code

 To revisit the basic concepts in OO like Information

Hiding, Polymorphism, Inheritance etc…

 Pre-requisites – A good knowledge of pointers,

structures and function pointers

Table of Contents

 Information Hiding

 Dynamic Linkage & Polymorphism

 Visibility & Access Functions

 Inheritance

 Multiple Inheritance

 Conclusion

Information Hiding

 Data types - a set of values and operations to work

on them

 OO design paradigm states – conceal internal

representation of data, expose only operations that

can be used to manipulate them

 Representation of data should be known only to

implementer, not to user – the answer is Abstract

Data Types

Information Hiding

 Make a header file only available to user,

containing

 a descriptor pointer (which represents the user-defined

data type)

 functions which are operations that can be performed

on the data type

 Functions accept and return generic (void) pointers

which aid in hiding the implementation details

Information Hiding

 Example: Set of elements

 operations – add, find

and drop.

 Define a header file

Set.h (exposed to user)

 Appropriate

Abstractions – Header

file name, function name

reveal their purpose

 Return type - void* helps

in hiding implementation

details

Set.h

extern const void * Set;

void* add(void *set, const void
*element);

void* find(const void *set, const
void *element);

void* drop(void *set, const void
*element);

int contains(const void *set, const
void *element);

Type Descriptor

Set.c Main.c - Usage

Information Hiding

 Set.c – Contains

implementation details of

Set data type (Not

exposed to user)

 The pointer Set (in Set.h) is

passed as an argument to

add, find etc.

void* add (void *_set, void *_element)

{

 struct Set *set = _set;

 struct Object *element = _element;

 if (!element-> in)

 {

 element->in = set;

 }

 else

 assert(element->in == set);

 ++set->count; ++element->count;

 return element;

}

find(), drop(), contains() etc …

Set.c

struct Set { unsigned count; };

static const size_t _Set = sizeof(struct Set);

const void * Set = & _Set;

Externed in Set.h

Set.h Main.c - Usage

Information Hiding

 Set is a pointer, NOT a

data type

 Need to define a

mechanism using which

variables of type Set can

be declared

 Define a header file –

New.h

 new – creates variable

conforming to descriptor

Set

 delete – recycles variable

created

New.h

void* new (const void* type, …);

void delete (void *item);

Takes in pointer ‘Set’

Arguments

with which to

initialize the

variable

New.c Main.c - Usage

Information Hiding

 New.c – Contains

implementations for

new() and delete()

void* new (const void * type, ...)

{

 const size_t size = * (const size_t *)

type;

 void * p = calloc(1, size);

 assert(p);

 return p;

}

delete() …

New.h Main.c - Usage

Information Hiding

 Need another data

type to represent an

Object that will be

added to a Set

 Define a header file

– Object.h

Object.h

extern const void *Object;

int differ(const void *a, const void

*b);

Type Descriptor

Compares variables of type ‘Object’

Object.c Main.c - Usage

Information Hiding

 Object.c –

Contains

implementation

details of Object

data type (Not

exposed to user)

struct Object { unsigned count; struct Set

* in; };

static const size_t _Object = sizeof(struct

Object);

const void * Object = & _Object;

int differ (const void * a, const void * b)

{

return a != b;

}

Externed in Object.h

Object.h Main.c - Usage

Information Hiding

 Application to demonstrate

the usage of Set.h,

Object.h & New.h

 void *b = add(s, new(Object));

 void *c = new(Object);

 if(contains(s, a) && contains(s,b))

 puts(“OK”);

 delete(drop(s, b));

 delete(drop(s, a));

 }

Output:

OK

#include <stdio.h>

#include “New.h”

#include “Set.h”

#include “Object.h”

int main()

{

 void *s = new (Set);

 void *a = add(s, new(Object);

Pointer ‘Set’ externed in Set.h

New.h New.c Object.c Object.h Set.c Set.h

Only header files

given to user

Pointer ‘Object’ externed in Object.h

Dynamic Linkage & Polymorphism

 A generic function should be able to invoke type-

specific functions using the pointer to the object

 Demonstrate with an example how function pointers

can be used to achieve this

 Introduce how constructors, destructors and other

such generic functions can be defined and invoked

dynamically

Dynamic Linkage & Polymorphism

 Problem:

 Implement a String data type to be included/ added to a

Set

 Requires a dynamic buffer to hold data

 Possible Solution:

 new() – can include memory allocation; but will have a chain

of ‘if’ statements to support memory allocations and

initializations specific to each data-type

 Similar problems with delete() for reclamation of memory

allocated

Dynamic Linkage & Polymorphism

 Elegant Solution:

 Each object must be responsible for initializing and deleting

its own resources (constructor & destructor)

 new() – responsible for allocating memory for struct String &

constructor responsible for allocating memory for the text

buffer within struct String and other type-specific

initializations

 delete() – responsible for freeing up memory allocated for

struct String & destructor responsible for freeing up memory

allocated for text buffer within struct String

Dynamic Linkage & Polymorphism

 How to Locate the

constructor & destructor

within new() & delete() ?

 Define a table of function

pointers which can be

common for each data-

type

 Associate this table with

the data-type itself

 Example of table – Struct

Class

struct Class {

/* Size of the object */

size_t size;

/* Constructor */

void * (* ctor) (void * self, va_list * app);

 /* Destructor */

 void * (* dtor) (void * self);

/* Makes a copy of the object self */

 void * (* clone) (const void * self);

/* Compares two objects */

int (* differ) (const void * self, const void * b);

};

Dynamic Linkage & Polymorphism

 struct Class has to be

made a part of the

data - type

 pointer to struct Class is

there in the data - type

String and Set

struct String {

const void * class; /* must be first */

char * text;

};

struct Set {

const void * class; /* must be first */

...

};

Dynamic Linkage & Polymorphism

 struct Class pointer at the

beginning of each Object is

important, so that it can be used

to locate the dynamically linked

function (constructor & destructor)

as shown

 new() & delete() can be used to

allocate memory for any data-

type

void * new (const void * _class, ...)

{

 const struct Class * class = _class;

 void * p = calloc(1, class —> size);

 * (const struct Class **) p = class;

 if (class —> ctor)

 {

 va_list ap;

 va_start(ap, _class);

 p = class —> ctor(p, & ap);

 va_end(ap);

 }

 return p;

}

Allocate

memory for p

of size

given in _class

Locate and

invoke the

dynamically

linked

constructor

Assign class at

the beginning

of the new

variable p

void delete (void * self)

{

 const struct Class ** cp = self;

 if (self && * cp && (* cp) —> dtor)

 self = (* cp) —> dtor(self);

 free(self);

}

Dynamic Linkage & Polymorphism

int differ (const void * self, const void * b)

{

 const struct Class * const * cp = self;

 assert(self && * cp && (* cp) —>differ);

 return (* cp) —> differ(self, b);

}

 Dynamic Linkage/ Late Binding:

the function that does the actual

work is called only during execution

 Static Linkage: Demonstrated by

sizeOf(). It can take in any object as

argument and return its size which is

stored as a variable in the pointer

of type struct Class

 Polymorphism: differ() is a

generic function which takes in

arguments of any type (void

*), and invokes the

appropriate dynamically

linked function based on the

type of the object

size_t sizeOf (const void * self)

{

 const struct Class * const * cp = self;

 assert(self && * cp);

 return (* cp) —> size;

}

Variable which

stores size in

struct Class

Dynamica

lly linked

function

Dynamic Linkage & Polymorphism

 Define a header file

String.h which defines

the abstract data

type- String:

String.h

extern const void * String;

Dynamic Linkage & Polymorphism

 Define another header

file String.r which is the

representation file for

String data-type

String.r

struct String {

 /* must be first */

 const void * class;

 char * text;

};

Dynamic Linkage & Polymorphism

 String.c – Initialize the

function pointer table with

the type-specific functions

 All the functions have been

qualified with static, since

the functions should not be

directly accessed by the

user, but only through new(),

delete(), differ() etc.

defined in New.h

 static – helps in

encapsulation

String.c

#include "String.r"

static void * String_ctor (void * _self, va_list * app)

{ struct String * self = _self;

const char * text = va_arg(* app, const char *);

self —> text = malloc(strlen(text) + 1);

assert(self —> text);

strcpy(self —> text, text);

return self;

}

String_dtor (), String_clone(), String_differ () …

static const struct Class _String = {

sizeof(struct String),

String_ctor, String_dtor,

String_clone, String_differ

};

const void * String = & _String;

Dynamic Linkage & Polymorphism

 Add the generic functions –

clone(), differ() and

sizeOf() in New.h

New.h

void * clone (const void * self);

int differ (const void * self,

const void * b);

size_t sizeOf (const void * self);

 Sample Application that

demonstrates the usage

 Create variable ‘a’ of type

String, clone it ‘aa’ and

create another variable ‘b’

of type String and

compare a, b

#include "String.h"

#include "New.h"

int main ()

{

 void * a = new(String, "a");

 * aa = clone(a);

 void * b = new(String, "b");

 printf("sizeOf(a) == %u\n", sizeOf(a));

 if (differ(a, b))

 puts("ok");

 delete(a), delete(aa), delete(b);

 return 0;

}

Output :

sizeOf(a) == 8

ok

Dynamic Linkage & Polymorphism

Inheritance

 Inheritance can be achieved by including a structure

at the beginning of another

 Demonstrate Inheritance by defining a superclass

Point with rudimentary graphics methods like draw()

and move() and then define a sub-class Circle that

derives from Point

 Define a header file

Point.h for the super-class

Point

 It has the type descriptor

pointer ‘Point’ and functions

to manipulate it

Point.h

extern const void *Point;

void move (void * point, int

dx, int dy);

Inheritance

 Define a second header

file Point.r which is the

representation file of Point

Point.r

struct Point {

 const void * class;

 int x, y; /* coordinates */

};

Inheritance

 The function pointer table is

initialized in Point.c

 It contains implementations

for dynamically linked

functions

 Move() is not dynamically

linked, hence not pre-fixed

with static, so can be

directly invoked by user

Point.c

static void * Point_ctor (void * _self, va_list * app)

{

 struct Point * self = _self;

 self —> x = va_arg(* app, int);

 self —> y = va_arg(* app, int);

 return self;

}

Point_dtor(), Point_draw() … etc

static const struct Class _Point = {

sizeof(struct Point), Point_ctor, 0, Point_draw

};

const void * Point = & _Point;

void move (void * _self, int dx, int dy)

{ struct Point * self = _self;

self —> x += dx, self —> y += dy;

}

Inheritance

 struct Class in New.r has

been modified to contain

draw() in place of differ()

 differ() in New.c has been

replaced with draw()

New.r

struct Class {

size_t size;

void * (* ctor) (void * self, va_list * app);

void * (* dtor) (void * self);

void (* draw) (const void * self);

};

New.c

void draw (const void * self)

{ const struct Class * const * cp = self;

assert(self && * cp && (* cp) —> draw);

(* cp) —> draw(self);

}

Inheritance

 Circle is a class that derives from Point

 Inheritance can be achieved by placing a variable of

type struct Point at the beginning of struct Class:

struct Circle { const struct Point _; int rad; };

 Just so that the user does not access the base class using

the derived class pointer, the variable name is an almost

hidden underscore symbol

 ‘const’ helps to protect against invalid modification of the

variable of type struct Point

 Radius is initialized in its constructor:

self —> radius = va_arg(* app, int);

Inheritance

 The internal representation

file of Circle – Circle.r is

shown

Circle.r

struct Circle {

const struct Point _;

int rad;

};

Inheritance

 Circle.c contains the table

of function pointers

 It contains the

implementation of the

dynamically linked functions

 draw() method has been

over-ridden in this case

Circle.c

static void * Circle_ctor (void * _self, va_list * app)

{

 struct Circle * self =

 ((const struct Class *) Point) —> ctor(_self, app);

 self —> rad = va_arg(* app, int);

 return self;

}

 static void Circle_draw (const void * _self)

{

 const struct Circle * self = _self;

 printf("circle at %d,%d rad %d\n",

 x(self), y(self), self —> rad);

}

static const struct Class _Circle = {

sizeof(struct Circle), Circle_ctor, 0, Circle_draw

};

const void * Circle = & _Circle;

Inheritance

 Since the initial address of the sub-class always

contains a variable of the superclass, the sub-class

variable can always behave like the super-class

variable

 Functionality of move() remains exactly the same for

Point and Circle, hence we can look for code re-use

 Passing the sub-class variable to a function like move()

is fine, since move() will be able to operate only on

the super-class() part which is embedded in the sub-

class

 Struct Circle can be converted to struct Point by up-

conversion and using void* as intermediate mechanisms

Inheritance

 Sub-classes inherit statically linked functions like

move() from Super-class

 Statically linked functions can not be over-ridden in a sub-

class

 Sub-classes inherit dynamically linked functions like

draw() also from super-class

 Dynamically linked functions can be over-ridden in sub-class

Inheritance

Visibility and Access functions

 A data-type has three files:

 ‘.h’ file - contains declaration of abstract data type and

other functions that can be accessed by the user; application

can include this file & a sub-class’s .h file will include a

super-class’s .h file

 ‘.r’ file - contains internal representation of the class; a sub-

class’s .r file will include a super-class’s .r file

 ‘.c’ file - contains implementation of the functions belonging

to the data – type; a sub-class’s .c file include its own .h and

.r file and its super-class’s .h and .r file

 We have an almost invisible super-class variable ‘_’

within the sub-class, but we need to make sure that

the sub-class part does not access and make changes

to the super-class part.

 We define the following macros for this purpose in

Point.r:

#define x(p) (((const struct Point *)(p)) —> x)

#define y(p) (((const struct Point *)(p)) —> y)

 While accessing x and y of Point within Circle, ‘const’

prevents any assignment to x and y

Visibility and Access functions

Multiple Inheritance

 Can be achieved by including the structure variables

of all the super-class objects

 The downside is that we need to perform address

manipulations apart from up-cast (from a sub-class

variable to a super-class) , to obtain the appropriate

super-class object

Inheritance vs. Aggregation

 Inheritance is shown by having struct Circle contain struct

Point at its starting address:

struct Circle { const struct Point _; int rad; };

 Delegation can be achieved by the following

mechanism:

struct Circle2 { struct Point * point; int rad; };

 Circle2 cannot re-use the methods of Point. It can just apply

Point methods to the Point component, but not to itself

 We need to decide whether to use Inheritance or

Delegation using the ‘is-a’ or ‘has-a’ test

Conclusion

 ANSI-C has all the language level – mechanisms to

implement object-oriented concepts

 Static keyword

 Function pointers

 Structures etc…

 The downside is that implementing object-oriented

concepts in C is not very straightforward and can be

complex in certain situations (Multiple inheritance)

References

 http://www.cs.rit.edu/~ats/books/ooc.pdf

 http://www.eventhelix.com/realtimemantra/basics/object_ori

ented_programming_in_c.htm

 http://stackoverflow.com/questions/2181079/object-

oriented-programming-in-c

http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.cs.rit.edu/~ats/books/ooc.pdf
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://www.eventhelix.com/realtimemantra/basics/object_oriented_programming_in_c.htm
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c
http://stackoverflow.com/questions/2181079/object-oriented-programming-in-c

