
Python 3

Introduction to Python 3

Welcome class. My name is Subrat Sharma and I am a CAETE student.

For my class presentation I will be talking about Python 3 - just a brief history of the
programming language and it's new direction.

Please feel free to stop me anytime if you have any questions.

Why Python?

● Very Popular Programming Language. Consistently ranked in
the top 10. [http://www.tiobe.com/index.
php/paperinfo/tpci/Python.html]

● Open Language standard and enhancement process [http:
//www.python.org/dev/peps/]

● Ubiquitous
○ Numerous implementations (IronPython, Jython, PyPy,

CPython)

● Swiss army knife of a library. Support for Cryptography,
Compression, File and String manipulations, Unicode etc. [http:
//docs.python.org/3/library/]

Why Python?

The question here being why Python is relevant to us as Software Engineers. Python
is one of the most popular computer programming languages published. It is
consistently ranked in the top 10 according to the TIOBE Software.

The Python language standard is very well defined and has a very open process for
introducing enhancements. The process of introducing enhancements is called
Python Enhancement Proposals.

Ubiquitous - If you look under the hood of any modern operating system. Python will
without fail be acting as a glue for tying different parts of the system together. Python
is one of the very few languages that are available in a variety of implementations
across a different platforms. To name a few. CPython, PyPy, IronPython etc. This
availability across varied platforms makes it a truly write once run everywhere
language.

Python boasts one of the most diverse set of libraries of any programming languages.
Including string manipulation, debugging, compression, cryptography, unicode etc. to
name a few.

http://www.tiobe.com/index.php/paperinfo/tpci/Python.html
http://www.tiobe.com/index.php/paperinfo/tpci/Python.html
http://www.tiobe.com/index.php/paperinfo/tpci/Python.html
http://www.python.org/dev/peps/
http://www.python.org/dev/peps/
http://www.python.org/dev/peps/
http://docs.python.org/3/library/
http://docs.python.org/3/library/
http://docs.python.org/3/library/

What is Python 3?

● A most unique enterprise. New ground-up design of Python.
First ever intentionally backwards incompatible release of
Python
[http://docs.python.org/3/whatsnew/3.0.html]

● Two concurrent platforms being supported currently (Py3K and
Py2k)

● From Python wiki - Python 2.x is the status quo, Python 3.x is
the present and future of the language [http://wiki.python.
org/moin/Python2orPython3]

What is Python 3?

[A most unique enterprise] As is common with any software that has a published API;
the curse of backwards compatibility also befell Python. However, overtime the
language designers felt that the language improvement started to suffer because of
the design decisions made decades ago.

Different from the common practice, they decided to break the need to be backwards
compatible. This has enabled making huge improvements to the language possible. A
rather large problem however still remains; all code that was written to work on earlier
versions of Python (<2.6) need to be ported if new features from Python 3 are to be
used.

[For us software engineers] This could be a hint at future market demands

The downside of this approach of language furtherment. There are concurrently two
versions of Python being actively developed. There is a greater focus towards making
the future of the language better. The following is a quote directly from the Python
wiki. Python 2.x is the status quo, Python 3.x is the present and future of the
language.

http://docs.python.org/3/whatsnew/3.0.html
http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/Python2orPython3
http://wiki.python.org/moin/Python2orPython3

Brief History of Python

● Created by Guido Van Rossum (Designated BDFL -
Benevolent Dictator For Life)

● Initially modeled as a successor to the ABC language [https:
//en.wikipedia.org/wiki/ABC_(programming_language)]

● First public release was in 1991 by Guido Van Rossum

● Current production versions are 2.7 and 3.3

● Python Software Foundation is the copyright owner

Brief History of Python

Python was created by Guido Van Rossum. He was also responsible for the initial
implementations of the language. He continues to be actively involved in the
development of the language and has been designated a BDFL (Benevolent Dictator
For Life - having the final say in the language direction) by the Python community.

Python was initially modeled as a successor to the ABC language.

Python was first publicly released in 1991 onto a message board by Guido Van
Rossum himself. At that point Guido had been working on Python for roughly two
years.

The two current production quality versions of Python releases are (production) 2.7
and (testing) 3.3. Although the core for version 3 is different from version 2, some of
the enhancements made to version 3 have also been backported and made available
in 2.7 to allow for easier transition to 3.

At present, the copyright for Python is owned by the Python Software Foundation, a
non-profit organization created to foster Python. Although throughout the years
different organizations have been the copyright owners for Python.

https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/ABC_(programming_language)
https://en.wikipedia.org/wiki/ABC_(programming_language)

Python 3 - Language Type

● Interpreted

● Object based
○ ID
○ Type

● Object oriented
○ Also supports entirely procedural programs

● Strongly typed

● Reference based

● Dynamically typed

Language Type

Interpreted language. The program is first parsed into its' abstract syntax tree (AST),
then compiled down into it's bytecode representation by the compiler. The bytecode is
then executed by the interpreter on the host machine.

Object based. All data in python (even programs) are represented as objects. An
object has a type and an id which remains with the object for it's lifetime. An object's
type cannot be modified at any time after it's creation.

Object oriented. Simply means that Python also supports object oriented
programming. It can also easily be used in a procedural manner. Python also
supports entirely procedural programs.

Strongly typed. Every entity represented in a python program has a object (and hence
a type) associated with it. The operations supported by an object is defined by the
type it belongs to. (Simply stated Python does not permit operations between two
different types. One such example would be concatenation of string and integer)

Reference based. Variables in python are simply reference type objects to the data it
points to. References (variables) can at any time be modified to point to a different
object.

Dynamically typed. The late association between an object and it's type renders it so
that python can only support runtime type checking.

Python 3 - Data Model

● All data is modeled as an object
○ Even programs are represented as an object

● Each object has a unique object identity and belongs to a
particular type
○ Both object identity and type cannot be modified

● Object type determines behavior
○ Mutability - whether or not object value can change

● Automatically garbage collected

● Actual behavior depends on implementation

Data Model

In Python, all data is modeled as an object. Even a python program, which when
parsed is also an object. (That infrastructure is made available as part of the Python
standard library)

Regarding what an object contains. An object consists of a value and a type and an
object identity. The type is the class associated with a particular object. Additionally,
each object also has an object identity. This object identity is unique and along with
the type is an unchangeable property for a given object.

The type becomes the core of the object, i.e. it determines the set of operations that
the object will provide or will participate in. Along with the abstractions, the type also
determines whether the value held by the object is mutable or not.

Finally, all entities in Python are automatically garbage collected. The actual
semantics of how garbage collection is performed is a task left for the implementation
to decide. Python also provides a module 'gc' which allows a user to customize
garbage collection to fit their needs.

Python 3 - Types - Numeric

● Supports three distinct numeric types - int, float and complex

● Integers - supports octal, decimal and hexadecimal
representations with unlimited precision
○ Boolean values are sub type of integers

● Floating Point Numbers - equivalent precision of a C decimal
○ special nan (Not a Number) and inf (Infinity) (+/-) values

supported

● Complex Numbers - real and imaginary parts. Each attribute is
of type float

● Standard Arithmetic, Bitwise operators supported

Now we will transition over to talk about built-in data types that you are most likely to
encounter in Python

Numeric

Python supports three basic numeric types namely integers, floating point numbers
and complex numbers. All other numeric data types are specializations of these three
types.

Integers: integers are the simplest of the three numeric data types. They contain a
single value. The precision for which is unlimited. In Python integer types support
decimal, octal and hexadecimal representations of a number.

Floating Point Numbers: This is the Python equivalent representation of a decimal
type in C. There are two special values supported by floating point numbers: nan (Not
a number) and inf (Infinity). Both these numbers are supported in both negative and
positive axes.

Complex Numbers: This is Python representation of a complex number. It has a two
parts (real and imag attributes) both of which are represented using a floating point
number.

All three numeric types support arithmetic and bitwise operators. There are other
additional operations that are supported as well.

Python 3 - Types - Sequences

● Sequences - list, tuple and range

● Further classified as mutable (list) or immutable (tuple, range)

● Some supported operations: iteration, indexing, length,
concatenation, count, slicing etc.

● Mutable sequences further support: insert, pop, remove,
reverse, append etc.

● List also supports sorting, which is guaranteed to be stable

Sequences

Sequences and Mappings in my opinion form the solid core which has permitted
Python to be adopted in diverse areas of computing.

There are several different types of sequences. We will first discuss list, tuple and
range sequences

You can further classify sequences by the type of the value they contain. Some
sequences permit the value stored to be modified while others don't. These types of
sequences which permit the value to be modified are known as Mutable sequences
(list). The ones that do not permit values to be modified once set are known as
Immutable (tuple, range)

As with any area in Python, the abstractions available in sequences are very rich.

List sequence type also supports sorting of the values contained. The actual
semantics of the sort is left to the implementation, however Python promises that the
sorting algorithm is stable. i.e. values that are equal in the sequence will maintain
their original order

Python 3 - Types - Sequences (contd.)

● Text Sequences - str
○ strictly immutable sequence of Unicode code points

● Equivalent single, double or triple quoted strings

● Features a very rich abstraction for string manipulation
○ Extends all operations supported by standard sequences

● A character is a text sequence of length 1

● Binary Sequences - bytes, bytearray and memoryview

Sequences (contd...)

Text Sequences are immutable sequences of Unicode code points. This is a major
enhancement added to Python 3 where the default string representation is in
Unicode. Text sequences in python are called string

Text sequences can be constructed in three distinct ways: Single Quotes, Duoble
Quotes and Triple Quoted string.
The language does not distinguish between the three different types aside from the
range of possible valid characters. string class probably boasts the most extensive set
of abstractions of any module.

Unlike languages of the early years, now a character is a text sequence which
happens to have a length of one.

To wrap up sequences we will briefly look at the three different types of binary
sequences supported in Python.
Those are bytes, bytearray and memoryview

Python 3 - Types - Sequences (contd.)

● Bytes - immutable sequence created by prefixing a string literal
with 'b'

● Bytes supports single, double and triple quoted representations
○ Only ASCII characters are permitted

● built-in bytes() enables copying any objects binary data

● Byte Arrays - mutable versions of Bytes

● Memory View - allows efficient access to object binary data
using buffer protocol

Sequence (contd..)

Bytes are an immutable sequences of single byte data. Bytes can can be created by
prefixing a string sequence with a bytes prefix. There are numerous valid ways to
represent a bytes prefix. This is the simplest way of representing binary data in
Python. Since bytes only permit storing single byte data, any data set containing
multi-byte code points must first be converted to an equivalent single byte (ASCII)
representation.

Byte Arrays are the mutable version of the bytes. Byte arrays are created by calling
their constructor - bytearray()

Memory View is a new addition to Python 3 which permits very efficient access to
binary object data using buffer protocol.

Python 3 - Types - Maps and Sets

● dict - maps hashable keys into arbitrary object containers

● Dictionary values can be of any object type

● Dictionary objects are mutable

● set and frozenset - unordered collection of distinct hashable
objects

● Frozen Sets are immutables

● Sets support standard set operations such as: union,
intersection, difference etc.

Maps and Sets

Dictionary is the only built-in of type maps available. With a map, we hash keys into
arbitrary object containers. Dictionary keys are required to be of type string. There is
no restriction on the value referenced by each key. Also, dictionary objects are
mutable. Assigning value by referencing a key will update the value stored in the
dictionaries internal representation.

Sets are represented by set and frozenset data types. To distinguish sets from
dictionaries; sets only permit storing an unordered collection of distinct objects that
are hashable. A set is mutable while a frozenset is not. Sets honors most of the
standard set operations like Union, Intersection etc.

Python 3 - Types - Miscellaneous

● None - Null object

● Type object - represents various object types
○ obtained using built-in function types()

● Boolean values - special type of int
○ Two values: True or False

● Truth Value Testing - the following resolve to False
○ Empty sequences, mappings or sets
○ Numeric values equal to 0
○ None

● Truth Values are used for testing conditions in constructs like if,
while or as an operand to a Boolean operation

Remaining Types

There are several other data types that are worth mentioning.

None - represents a null object. Signifies a lack of value.

Type object - represents the various object types available in the system. This object
is obtained by using the built-in function types()

Boolean values - Firstly, Boolean values are a sub-type of the Integer type value. The
only two valid values are True and False

Truth Value Testing

This is a way to identify what resolves to a True or False. This kind of testing is most
commonly used in conditional constructs. Empty values or Zero resolves to a False.
Everything else is True.

Python 3 - Types - Functions

● User defined (defined using def), Anonymous functions
(defined using lambda), Generator (yeild)

● Functions are first-class objects

● Function definition is a statement which binds the function
name to a function object

● Functions are callable objects. The body of a function is only
executed when the function is called

● Functions can be passed parameters

● Function parameters can be assigned default values. The
values are evaluated during definition

Functions

In Python, even functions are objects of a particular type. The broad group the
functions belong to is known as the callable object types. There are several different
types of objects that fall under the broad group of callable object types, here are a
few:
1. User defined functions and Instance methods (defined using def keyword)
2. Generator expressions - (yield keyword)
2. Anonymous functions (defined using lambda expressions)

Furthermore, functions in python are first-class objects. I understood it to simply mean
that function objects can be returned from and passed into a function. However, there
is a good bit of detail related to scoping rules which will require a good exercise to
digest.

Even function definition is a statement, which when the interpreter encounters is
tasked with creating an instance of the function object and associating the name of
the function with this object in the current local scope namespace. Also, as explained
earlier functions belong to a general class of objects called callable object. When a
function defined is called by using the '()' appended to the function name the
expressions (code) inside the body of the function object is executed as a block.

We can always pass parameters to the functions (those that are defined to contain it).
Also, function parameters can be assigned default values which are evaluated at the
time the function definition is executed and not when the function is called.

Python 3 - Types - Classes

● Classes are defined by using the built-in class type

● Objects of type class are callable types

● All class attributes are stored using an internal dictionary

● Class attribute assignments update class's dictionary, never the
base classes

● Instance methods use the first argument as a reference to the
class instance that contains it

● Init method (__init__) is the constructor

● Visibility modifiers are not supported

Classes

Similar to function objects class objects also belong to the group of callable objects. A
class is defined by using the keyword class. When the class is defined, the name of
the class is bound to the local namespace with the class object.

Every class attribute is stored using an internal class dictionary. When updating a
class attributes value, the value associated with the key in the internal dictionary of
the class is updated and never of the base classes of the class.

If a function needs to access instance attributes, the first argument passed to the
method is a reference to the instance object itself. __init__ serves as the constructor

Python does not support visibility modifiers. i.e. aside from convention (using
underscores in names) there is no way in python to hide either attributes or methods
from being accessed from outside of the class itself. This is a significant difference
when compared with OO programming languages like Java and C#.

Python 3 - Class and Inheritance

● Supports Inheritance (even Multiple Inheritance)

● Derived classes can override any of the base class methods
○ All methods are virtual (equivalence in C++)

● Alternatively, instead of overriding classes can also extend
base class methods

● For simple cases, attribute resolution occurs in the order of
definition (Left to Right and Depth First Search)

● Actual implementation for heirarchy linerization [http://www.
python.org/download/releases/2.3/mro/]

Class and Inheritance

Python supports inheritance (surprise!). However, what is different from the more
popular OO languages today (C#, Java) is that Python supports multiple inheritance.

Any of the derived classes can override any of the methods defined in any of the base
classes. Effectively, every instance method defined is the equivalent of a C++ virtual
function. Even when overriding methods, it it possible to access the base classes
methods allowing us to also extend the behavior defined in base class methods.

With regards to inheritance, for the most simple of cases - attribute (and method)
resolution occurs in the order of definition in the class definition object. This happens
from Left to Right and uses Depth First Search. The actual implementation however is
significantly more complex than a simple DFS. (Ahh well...)

http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/
http://www.python.org/download/releases/2.3/mro/

Python 3 - Types - Exceptions

● Provides a way to break out of normal flow of control of a code
block

● Exceptions are classes too

● Exceptions are thrown by using the raise keyword

● Exceptions are handled using try ... except and finally clauses

● All Exceptions are instances of classes that inherit from
BaseException

Exceptions

Exceptions provide a way for the interpreter to break out of the normal flow of control
for a code block. Exceptions also belong to the callable type and are special type of
class objects. All exceptions inherit from a single built-in exception class called the
BaseException

An exception in Python is thrown by using the raise keyword. If an exception is not
specified, Python tries to locate the last exception thrown and raises that instead. The
full set of constructs in Python to accomplish Exception handling are: try ... except,
finally and raise

The method of exception handling that Python uses is known as "termination" model.
This model makes it possible to handle different types of errors encountered however
it is not possible to return to the source of the error and fix the problem.

Python 3 - Conclusion and Reference

● Just scratching the surface of Python

● Intuitive design and simple to type

● Interactive Interpreter

● Python Documentation - includes tutorials, language reference
and library references, FAQ etc. [http://docs.python.org/3/index.
html]

● Zen of Python [http://www.python.org/dev/peps/pep-0020/]

Conclusion

Python is a very intuitive and a simple language to program in. The abstractions it
provides seem like an extension of the english language.

Python is a language rich in it's definition and in the standard libraries that decorate it.
We only explored some of the aspects of the type system provided in Python. It's this
base that is extended in an simple manner to build this powerful language.

I encourage those of us that are new to Python to try and experiment with the
language. Python provides a command line interpreter as part of the standard
installation, this is a very helpful tool to understand the basics of the language and
test code blocks out.

Thanks.

http://docs.python.org/3/index.html
http://docs.python.org/3/index.html
http://docs.python.org/3/index.html
http://www.python.org/dev/peps/pep-0020/

