
Frank Di Natale and David Parker

● Student Bios
● What is it?
● History
● Why use Cocos2d?
● Features
● Installation
● Creating a new

project
● Classes
● Descriptions of

various classes

Contents
● OO Principles with

Cocos2d
● The Big Picture
● OO Suggestions for

Cocos2d
● Number of games
● Other ports
● Future
● Other frameworks
● Resources

Frank Di Natale and
David Parker

Parker is a dual MS in
Computer Science and MBA
student ('13)
He enjoys coding, running,
bboying, sleeping, eating,
and Scotch.
He wants to solve the
world's problems one
program at a time.

Frank is a PhD student in
Computer Science ('16).
He enjoys gaming, coding,
and drawing... and being a
gangster.
He wants to get his PhD in
Computer Architecture and
work for Intel.

What is it?
● Cocos2d is a framework for building 2-

dimensional (2D) applications (mostly
games) for iOS

● It is most commonly used for game
development

● It provides a wrapper to OpenGL ES which
is already on the iOS device

History
● Based on Cocos2d, written in Python

○ Started march 2008
○ Originally named Los Cocos

● Cocos2d-iPhone
○ Quickly became Cocos2d as the iOS version

overcame the Python version
○ iPhone version started in April 2008
○ iPhone v0.1 released in July 2008

● By end of 2008, over 40 games in the App
Store made with Cocos2d

Why use Cocos2d?
● Easy to Use

○ Familiar, simple API and many examples
● Fast

○ Uses OpenGL ES best practices
● Flexible

○ Easy to use, easy to integrate with 3rd party libs
● Free

○ OSS, closed and open source compatible
● Community support

○ Big, active, friendly community (Forum and IRC)
● App Store approved

○ 2500 App Store approved games use it

Features (I)
● Scene Management (workflow)
● Transitions between scenes
● Sprite and Sprite sheets
● Effects: Lens, ripple, liquid, etc
● Actions (behaviors):

○ Transformations: Move, Rotate, Scale
○ Composable: Sequence, Repeat
○ Ease: Exp, Sin

● Menus and Buttons
● Integrated physics engines (Box2d and

Chipmunk)

● Particle System
● Text Rendering
● Texture Atlas Support
● Tile Map Support

○ Orthogonal, Isometric, Hexagonal
● Parallax Scrolling Support
● Sound Support
● Streak Motion Support
● Render Texture Support
● Many, many more...

Features (II)

Installation
Download the latest (stable) version at:
http://www.cocos2d-iphone.org/download

Install the templates by running:
./install-templates.sh -u -f

Creating a New Project
Open Xcode > New Project > cocos2d

● CCAction
● CCActionCamera
● CCActionEase
● CCActionGrid
● CCActionGrid3d
● CCActionInstant
● CCActionInterval
● CCActionManager
● CCActionPageTurn

3d

● CCActionProgressT
imer

● CCActionTiledGrid
● CCActionTween
● CCAnimation
● CCAnimationCache
● CCAtlasNode
● CCBlockSupport
● CCCamera
● CCConfiguration

Classes (I)

● CCMenuItem
● CCMotionStreak
● CCNode
● CCParallaxNode
● CCParticleSystem
● CCParticleSystemP

oint
● CCParticleSystemQ

uad
● CCProgressTimer

● CCDirector
● CCDrawingPrimitiv

es
● CCGrabber
● CCGrid
● CCLabelAtlas
● CCLabelBMFont
● CCLabelTTF
● CCLayer
● CCMenu

Classes (II)

● CCTexture2D
● CCTextureAtlas
● CCTextureCache
● CCTexturePVR
● CCTileMapAtlas
● CCTMXLayer
● CCTMXObjectGrou

p
● CCTMXTiledMap
● CCTMXXMLParser

● CCRenderTexture
● CCRibbon
● CCScene
● CCScheduler
● CCSprite
● CCSpriteBatchNod

e
● CCSpriteFrame
● CCSpriteFrameCac

he

Classes (III)

● CCTransition
● CCTransitionPageTurn
● CCTransitionRadial

Due to the high number of classes used, this
presentation will only cover "key" classes
used to make a game with Cocos2d.

Classes (IV)

Class: CCNode
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCNode.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_node.html

● CCNode is the base element in Cocos2D.
○ Anything that can be drawn uses the CCNode object.

● CCNode Features:
○ They can contain other CCNode nodes (addChild,

getChildByTag, removeChild, etc)
○ They can schedule periodic callback (schedule, unschedule,

etc)
○ They can execute actions (runAction, stopAction, etc)
○ They can be translated, scaled, rotated, skewed, and moved.

Class: CCNode
How it uses OO?

● Some CCNode nodes
provide extra functionality for
them or their children.

● The most popular CCNodes
are: CCScene, CCLayer,
CCSprite, CCMenu.

● Subclassing a CCNode
usually means (one/all) of:

○ overriding init to
initialize resources and
schedule callbacks

○ create callbacks to
handle the
advancement of time

○ overriding draw to
render the node

Class: CCSprite
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCSprite.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_sprite.html

● CCSprites are derived from the CCNode
class and have the same features.

● CCSprite is used to denote a CCNode that
has an image that can be displayed to the
user.
○ Supports blending functions
○ Supports aliasing/anti-aliasing

Class: CCSprite
● Example of sprites from Nintendo's

Pokemon Black on the Nintendo DS

Class: CCSprite
How it uses OO?

● A CCSprite is used to
manage an image to be
rendered to the output
screen.

● Use of the CCSprite allows
for batch rendering using the
CCSpriteBatchNode.
○ Each CCSprite requires a

single OpenGL call to be
rendered.

○ Using batch rendering reduces
the number of OpenGL calls
made to render objects to the
screen.

Class: CCLayer
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCLayer.m
Documentation: http://www.cocos2d-iphone.org/api-ref/0.99.2/interface_c_c_layer.html

● CCLayer is a subclass of CCNode that implements the
TouchEventsDelegate protocol.

● All features from CCNode are valid, plus the following
new features:
○ It can receive iPhone Touches.
○ It can receive Accelerometer input

Class: CCLayer
How it uses OO?

● A CCLayer is no different than a CCNode, with the only exception
being its implementation of touched interfaces.
○ The use of interfacing allows for developers to modify how their own game

layers respond to touch (or disable it altogether).

Class: CCScene
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCScene.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_scene.html

● CCScene is a subclass of CCNode that is
used only as an abstract concept.
● CCScene an CCNode are almost identical with the difference that

CCScene has it's anchor point (by default) at the center of the screen.

● For the moment CCScene has no other logic than that, but in future
releases it might have additional logic.

● It is a good practice to use and CCScene as the parent of all your
nodes.

Class: CCScene
How it uses OO?
● While the CCScene object is basically a

node, there is the notion of a scene stack
that controls the ordering of scenes.
○ The basic operation consists of a scene replacing the current scene,

which does not require the use of the stack. The scene stack,
however, is useful for layering multiple scenes on top of other
background scenes.

○ The stack is useful for scenes where it is possible to have a menu
appear over the current game screen (such as pause menus,
inventory screens, etc.)

○ Another use is overlaying cutscenes onto the game screen, which
would allow the player to resume where they left off one the scene is
popped.

Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCDirector.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_director.html

CCDirector creates and handles the main
Window and manages how and when to
execute scenes.
The CCDirector is also responsible for:
● Initializing the OpenGL ES context
● Setting OpenGL pixel format (default is RGB565)
● Setting OpenGL buffer depth (default is 0-bit)
● Setting projection (default one is 3D)
● Setting orientation (default one is Portrait)

Class: CCDirector

Class: CCDirector
Singleton Goodness
CCDirector uses the Singleton Design Pattern.
The Singleton DP is used throughout Cocos2d.
The CCDirector instance is created within the
AppDelegate.

Since the CCDirector is a singleton, the
standard way to use it is by calling:
[[CCDirector sharedDirector] methodName];

The main two things the CCDirector ends up
being used for is screen size and scene
management:

For scene management, the methods regularly
used are:
● runWithScene, replaceScene,

pushScene, and popScene.

Class: CCDirector
Usage

Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCAction.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_action.html

Base class for all Action classes
● Keeps track of target of action
● Action will affect the target based on appropriate tag

Action subclasses are generally in one of two
categories:
● Instant actions - no duration
● Interval actions - takes place within period of time

Class: CCAction

Class: CCAction
Instant Actions (less
common):
● Flipping
● Hiding
● Showing
● Placing
● Toggling Visibility

Interval Actions
(more common):
● Easing
● Fading
● Moving
● Rotation
● Scaling
● Tinting
● Many more

That's one HUGE Inheritance Tree:

Class: CCAction

Huge Inheritance Tree (a little closer):

Class: CCAction

Create the specific type of action you want:

In this example, we're creating a Tint action.
We can create multiple, then add them to a Sequence,
which we can then Repeat if we want. In this example, we
attach the RepeatForever Action to the menu:

This will end performing a tint on the playButton, which will
tint between red, green, and blue indefinitely.

Class: CCAction
Usage

Class: CCMenu
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCMenu.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_menu.html

Allows easy addition of a menu to game
Features and Limitation:
● You can add MenuItem objects in runtime using

addChild:
● But the only accepted children are MenuItem objects

Class: CCMenuItem
Source Code: https://github.com/cocos2d/cocos2d-iphone/blob/develop/cocos2d/CCMenuItem.m
Documentation: http://www.cocos2d-iphone.org/api-ref/1.0.0/interface_c_c_menu_item.html

Super class for creating Menu Items

Class: CCMenu &
CCMenuItem Usage
Create a menu item that you want to use.

Then create a menu with
that menu item, or attach
it after creation.

Now the button is added:

OO Principles with
Cocos2d
● It is possible with the basic classes mentioned

previously to create a set of generic objects that are
used to create the main gameplay mechanics.

● GameObject
○ The base representation of all objects within the game.
○ Aggregates a few objects:

■ CCAnimation (subclass of CCAction) for animations

■ CCSprite to set its rendering image

■ HealthBehavior for tracking object life points (custom object)

■ Movement behavior and methods

OO Principles with
Cocos2d
● GameCharacter

○ Derived from the GameObject class because a GameCharacter IS-A
GameObject

○ Used to create in-game NPCs
○ Overloads movement, animations, and other methods as needed.

● You can additionally derive from GameCharacter to
make a PlayerCharacter.

● Other objects that can be made from the existing
Cocos2d libraries include specialized scenes (main
menu scene, inventory scene, etc.)

OO Principles with
Cocos2d - GameObject

● The GameObject simply
aggregates a CCSprite and
other property classes such as
CCAction, CCAnimation, etc.
○ Favoring aggregation over inheritance

helps to keep the number of objects
manageable because GameObjects
exhibit varying behavior.

○ This design also allows new behaviors
to be developed without affecting other
classes, promoting loose coupling.

OO Principles with
Cocos2d - GameObject
● From the GameObject, the GameCharacter class is a

simple derivation with the following:
○ Overrides for default movement behavior. Assuming the GameObject

would assume stationary objects, the new behavior would provide
movement.

○ Health behavior could continue to be varied based on the type of
GameCharacter (NPC, enemy, etc.)

○ The GameCharacter object would be the base object that NPCs,
enemies, the player would inherit from.

● The CCDirector is the controller to all of the other
scenes in the game, coordinating timing and
appearance.

The Big Picture

● The Gameplay Scene
has been expanded
to show how a scene
is broken down into
layers by function.

● Each layer is then
constructed of the
necessary sprites and
methods.

Cocos2d suffers greatly from using inheritance
over using composition.
● For example, see the CCAction inheritance

tree above.
● As opposed to having an CCActionBehavior,

which can be assigned and set on the fly,
the framework uses inheritance.
○ Instead, it should be using the Strategy pattern to

allow different behaviors to be set.
Otherwise, Cocos2d is pretty well designed.

OO Suggestions for
Cocos2d?

Number of games
using Cocos2d

4,289 games listed on http://www.cocos2d-
iphone.org/games/
as of October 17, 2012.

Probably hundreds (or thousands) more not
listed!

Other ports
Besides Cocos2d, there are several other
ports:
● Cocos2d-x

○ C++ Implementation of Cocos2d

● Cocos2d-html5
○ JavaScript port
○ Targets the Cocos2d-x API

● Cocos2d-android
○ Java port for Android

In active development:
https://github.com/cocos2d/cocos2d-iphone
● 2,340 users "starred" Cocos2d
● 521 forks
● 1000+ commits

Last commit (as of Nov 10):
● v1.X - Oct 21st
● v2.X - Nov 9th

Future (I)

Future (II)
Current stable build:
● v1.1.0

Next version build:
● v2.1-beta3 released November 7, 2012
● Allows targeting JavaScript (Cocos2d-x API)
● Atwood's Law:

○ "Any application that can be written in JavaScript,
will eventually be written in JavaScript."

Other Frameworks
● Cocos2d-x

○ http://www.cocos2d-x.org/
● Corona

○ http://www.coronalabs.com/products/corona-sdk/
● Unity

○ http://unity3d.com/
● Sparrow

○ http://gamua.com/sparrow/
● OpenGL ES (the metal)

○ http://www.khronos.org/opengles/

Framework and documentation:
● http://www.cocos2d-iphone.org/
● http://www.cocos2d-iphone.org/wiki/doku.

php/
● http://www.cocos2d-iphone.org/wiki/doku.

php/faq

Wikipedia:
● http://en.wikipedia.org/wiki/Cocos2d

Resources (I)

Issues tracker:
● http://code.google.com/p/cocos2d-

iphone/issues/list

Source code:
● https://github.com/cocos2d/cocos2d-iphone/

Resources (II)

List of games using:
● http://www.cocos2d-iphone.org/games/

Very active forum:
● http://www.cocos2d-iphone.org/forum/

Resources (III)

History:
● http://www.cocos2d-iphone.

org/forum/topic/5653
● http://www.scribd.

com/doc/88493987/Cocos2d-past-present-
and-future

Resources (IV)

Objective-C references:
● http://developer.apple.

com/library/mac/#documentation/cocoa/conc
eptual/objectivec/

Objective-C protocols:
● http://developer.apple.

com/library/mac/#documentation/cocoa/conc
eptual/objectivec/chapters/ocProtocols.html

Resources (V)

Cocos2d Books:
Learning Cocos2d: A hands on guide to building iOS
games with Cocos2d, Box2d, and Chipmunk
By Ray Wenderlich

Learn iPhone and iPad cocos2d Game
Development
By Steffen Itterheim

Resources (VI)

