
Guice
Java DI Framework



Agenda

● Intro to dependency injection
● Cross-cutting concerns and aspect-

oriented programming
● Intro to Guice
● More Guice



What is DI?

Dependency injection is a design pattern that's like a 
"super factory". 

Like factories...
● Dependency injection separates users of an interface 

from the interface's implementation
● It enables some measure of hot-swapping classes in 

production
● It increases encapsulation and polymorphism, since 

interface users don't have undue control over which 
implementation they get



What is DI?

But factories...
● Are often implemented separately for each interface to 

implementation binding
● Are more difficult to keep in sync if one implementation 

needs to exist with another in order to make sense -- 
more on this later

● Are scattered among classes that perform actual 
application logic, so finding and modifying them is more 
difficult

● Usually require setup and teardown code, introducing 
global state into the application code and making testing 
more complex



What is DI?

A simple way to think of dependency injection is, rather 
than using "new" or implementing a factory for each 
variable, the variables are passed in as constructor 
arguments.

This sounds like a good way of solving our problems with 
factories (now bindings can be centralized and separated 
from application code, for example), but doing it manually 
requires backtracking through large object trees -- each 
object in the chain needs its variables to be injected as 
well.

So why should we do this?



Cross-cutting concerns & AOP

Cross-cutting concerns occur when many 
orthogonal tasks exist in a system, often in a 
way that forces their code to be intermingled.

This is extremely common in production code. 



Cross-cutting concerns & AOP

Cross-cutting concerns, scenario 1:

● Imagine a system that requires authentication before 
doing a wide variety of tasks

● Many classes must make use of a session manager 
object

● If we're not careful, switching our session manager's 
implementation to a new system will be tedious and 
mistake-prone, since it's sprinkled everywhere

● For example, we might need a completely different 
session manager when we're testing the application, 
complete with test user accounts, but we don't want side 
effects of this session manager appearing in production



Cross-cutting concerns & AOP

Cross-cutting concerns, scenario 2:

● We would like to do analytics on user interactions and 
engagement throughout many areas of the application

● Analytics data must be gathered, formatted, and sent to 
a remote server for analysis

● Every analytics provider has vastly different format 
requirements

● What happens if we need to change analytics 
providers? How about if we need to hook into a sandbox 
analytics system when we're testing the application?



Cross-cutting concerns & AOP

Aspect-oriented programming tries to 
separate these cross-cutting concerns into 
independent, easy-to-vary aspects.

This isn't a programming paradigm in the same 
way as, say, OOP or functional programming, 
but rather an aspect (snerf) that can be applied 
to any programming style.



Cross-cutting concerns & AOP

Aspects don't necessarily correspond to a 
single class -- in fact, they are usually broader.

Example:
For testing purposes, you might write output to 
a local file rather than to a database. Not only 
does the actual output routine have to change, 
but the output formatting needs to change as 
well, in order to be easily user-readable.



Cross-cutting concerns & AOP

This is where factories can fall short. Making 
aspects switchable requires a lot of boilerplate, 
often across multiple separate factory classes.



Intro to Guice

Guice represents these aspects in the form of 
modules, collections of related interface-
implementation bindings that can be easily 
swapped out.

Let's look at a module.



Intro to Guice
public class TestOutputModule extends 
AbstractModule {
  @Override 
  protected void configure() { 

               bind(OutputWriter.
class).to(FileOutputWriter.class);
bind(OutputFormatter.class).to
(TestOutputFormatter.class);

  }
}



Intro to Guice

When we want to write a module, we usually 
start by overriding its configure function.

bind(Interface.class).to(Implementation.class);

is a pretty common use pattern in Guice. What 
this tells Guice is "any time you are asked to 
inject Interface, create a new instance of 
Implementation". 

 



Intro to Guice

In order to use our module, Guice needs to 
know which module to use, and it needs to 
know where it should insert instances of 
Implementation.

First, in some fairly global area, usually main(), 
create a new injector:

Injector injector = Guice.createInjector(new 
TestOutputModule());



Intro to Guice

Now, for classes participating in dependency 
injection, we need to tell Guice which 
constructor to use. We do this with an @Inject 
annotation.

For example, assume our OutputFormatter 
interface has one method, format().



Intro to Guice
class TestOutputFormatter implements 
OutputFormatter {

  public void format() {
System.out.println("formatted!");

}
}



Intro to Guice

Now we can go back to our main loop and 
create an OutputFormatter using the injector:

Injector injector = Guice.createInjector(new 
TestOutputModule());

OutputFormatter formatter = injector.
getInstance(OutputFormatter.class);



Intro to Guice

For this class, Guice used the default 
constructor, realized that it didn't need any 
parameters passed in, and simply returned a 
new TestOutputFormatter.

At first, this seems like crazy overkill. Right 
now, it is! We imported Guice, made a whole 
new class, and initialized an injector. Using 
"new TestOutputFormatter()" or even 
homerolling a factory would have been easier.



Intro to Guice

Here's where it starts to get better.

Let's say our TestOutputWriter requires an 
OutputFormatter to organize its output.

Of course, it also needs a write() method, like 
other OutputWriters.



Intro to Guice
public class FileOutputWriter implements OutputWriter {

private final OutputFormatter _formatter;

public FileOutputWriter(OutputFormatter formatter) {
_formatter = formatter;

}

@Override
public void write() {

_formatter.format();
System.out.println("writing to file!");

}

}



Intro to Guice

And here's our new main function:

public static void main(String[] args) {
Injector injector = Guice.createInjector(new 

TestOutputModule());
OutputWriter writer = injector.getInstance

(OutputWriter.class);
writer.write();

}



Intro to Guice

But this won't run! Instead, if we try to run it, 
we'll get a unhelpful Guice error about creating 
injectors.

What we've forgotten is the @Inject annotation, 
which tells Guice's injector to use the annotated 
constructor to create the object, and to inject 
any arguments provided.



Intro to Guice
public class FileOutputWriter implements OutputWriter {

private final OutputFormatter _formatter;

@Inject
public FileOutputWriter(OutputFormatter formatter) {

_formatter = formatter;
}

@Override
public void write() {

_formatter.format();
System.out.println("writing to file!");

}

}



Intro to Guice

Now our main function should run.

But what if we want to pass an integer flag to 
the TestOutputFormatter?



Intro to Guice
class TestOutputFormatter implements OutputFormatter {

  private final Integer_flag;

  @Inject
  public TestOutputFormatter(Integer flag) {
  _flag = flag;
  }

  public void format() {
System.out.println("formatted with flag " + _flag);

}
}



Intro to Guice

Now we're passing in a literal value, but how do 
we tell Guice what value to use?

We'll have to add another binding, but this time 
an instance binding.



Intro to Guice
public class TestOutputModule extends AbstractModule {
  @Override 
  protected void configure() { 

             bind(OutputWriter.class).to
(FileOutputWriter.class);
bind(OutputFormatter.class).to(TestOutputFormatter.
class);
bind(Integer.class).annotatedWith(Names.named
("formatflag")).toInstance(1);

  }
}



Intro to Guice

Annotate the constructor argument accordingly:

public TestOutputFormatter(@Named("format 
flag") Integer flag)

and the code should now run properly without 
Guice warnings.



Intro to Guice

More broadly, this allows for consistent, 
module-wide constants.

Note that we can also used the annotatedWith 
specifier on interface-implementation bindings.

Further capabilities of Guice...



More Guice

Providers

Sometimes, an object needs more than its 
constructor to be ready for action. Maybe it 
needs to be constructed, then have a delegate 
set sometime afterward. Likely it's a class we 
don't have full control over.

So, we implement Provider to create a factory 
for the troublesome class.



More Guice
public class InterfaceProvider implements Provider<Interface> {
  private final DelegateInterface _delegate;

  @Inject
  public InterfaceProvider(DelegateInterface delegate) {
    _delegate = delegate;
  }

  public get() {
    Interface interface = new Implementation();
    interface.setDelegate(_delegate);
    return interface;
  }
}



More Guice

Now we create a different kind of binding. 
Instead of interface-implementation or class-
instance,

bind(Interface.class).toProvider(InterfaceProvider.class);

When Guice needs an instance of Interface, it 
will construct the provider, then call get() to 
retrieve the provided object.



More Guice

Singleton objects

Annotate an implementation with @Singleton 
to tell Guice it should reuse one object instead 
of creating a new instance every time it injects 
the class.



More Guice

Things to try out:
● Guice resolves bindings at runtime, so an alternative to 

"production" and "test" modules is one module reading 
bindings from production.properties or test.properties.
○ Usual warnings about introspection apply, and errors 

will be especially hairy due to Guice's confusion
● JUnit tests pair well with Guice, try expanding on the 

snippets presented in the slides and writing some unit 
tests.

● Guice errors have a steep learning curve. If you 
want to be comfortable with Guice,  try to make the 
example code fail in various ways.



Further reading

● http://code.google.com/p/google-
guice/wiki/GettingStarted

● http://www.youtube.com/watch?
feature=player_embedded&v=hBVJbzAagfs


