
Persistence
Storing and Retrieving Objects

The ability to store and retrieve objects
between subsequent or concurrent
executions of a program is called "object
persistence." It is a problem with many
solutions, none of them perfect. This
presentation serves as an overview of the
concepts and an introduction to a few of the
solutions.

Executive Summary

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

Agenda

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

What is Persistence?
The storing and retrieving of information or state
between subsequent executions of an application.

Overview

● Many developers use the word as verbal shorthand
for "storing objects in a database."

● Persistence can be achieved through a variety of
mechanisms, including:
○ Files stored on the hard disk

■ Flat files
■ Structured files
■ Binary files

○ Cloud storage
○ Database storage

Overview

● Web server
○ Content (web pages, web apps, etc.)

● Image viewer
○ Images and transforms thereof

● Banking
○ Account balances, transaction history, etc.

● Virtually every non-trivial application
○ User preferences and settings

Overview: Examples

Given the thrust of this course, I'm going to
focus on the aspects of persistence that
pertain to object-oriented programming.

In particular, I'll be focusing on Java
frameworks and persistence as it applies to
storing objects in a database.

Overview: Scope of Presentation

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

Persistence brings with it a whole set of
jargon:
● Transparency
● CRUD
● POJO
● ACID

Concepts and Terminology

Transparent or orthogonal persistence is a
system in which state is preserved
intrinsically, without any special actions from
the application.

Concepts and Terminology:
Transparency

The four basic operations involved in object
persistence are create, read, update, and
delete (CRUD).

Concepts and Terminology: CRUD

CRUD SQL
Create INSERT

Read SELECT

Update UPDATE

Delete DELETE

A plain old java object (POJO) is an object
that need not extend a particular class or
implement a specific interface or contain a
prespecified annotation in order to work with
a given framework or library.
The term is most commonly associated with
JavaBeans and common persistence
technologies.

Concepts and Terminology: POJO

Persisting a POJO is attractive because it
prevents code from getting cluttered with
implementation details related to the
persistence framework. Unfortunately, it is
rarely the case that an object can be stored
and retrieved without some manner of
alteration.

Concepts and Terminology: POJO

Atomicity, consistency, isolation, and
durability (ACID) are four characteristics of a
reliable database system.

Concepts and Terminology: ACID

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

● Overview
● Scalability
● Flexibility
● Portability
● Maintainability
● Summary

Design Concerns

Although it may seem trite to say it, $g
(Object/Relational Mapping) is the Vietnam
of Computer Science. It represents a
quagmire which starts well, gets more
complicated as time passes, and before long
entraps its users in a commitment that has
no clear demarcation point, no clear win
conditions, and no clear exit strategy.

- Ted Neward

Design Concerns: Overview

http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx

Persistence is at times a controversial topic
in computer science. Some hate ORM,
others insist it is the only viable option. By
looking at design implications, we can decide
when and where to employ it.

Design Concerns: Overview

Java Database Connectivity (JDBC), aka
"the hard way," is the Java API for direct
interaction with a database. This is the
standard for comparison when we look at the
different approaches to persistence.

Design Concerns: Overview

As the footprint of the application grows
(more users, more data), the persistence
solution needs to be able to grow with it.

Design Concerns: Scalability

NoSQL is often a good solution when a
large-scale or high-performance persistence
framework is needed. We'll cover it in more
detail in the Frameworks section.

Design Concerns: Scalability

As the requirements of the system change,
the persistence solution needs to remain
able to support them.

Design Concerns: Flexibility

A good persistence solution offers a layer of
abstraction that allows many different and
diverse objects to be persisted without much
special logic to massage them into the
database.

Design Concerns: Flexibility

Moving from one architecture, database,
operating system to another can be a Big
Deal.

Design Concerns: Portability

An example from personal experience:
I implemented persistence on a project using
OpenJPA with a Derby database. Our team lead felt
that Derby wouldn't scale well so we switched to
PostgreSQL. This required some configuration
changes but no source code changes in our project.
We later moved to Oracle because a new customer
wouldn't let any other database system on their
network. Again, none of our source code had to
change -- thanks to the abstraction provided by
OpenJPA.

Design Concerns: Portability

As the objects being persisted change, an
inadequate persistence framework is going
to need constant attention.

Design Concerns: Maintainability

Without ORM, one is forced to write SQL or
JDBC queries by hand. This approach is
quick and dirty, and often sufficient to get a
small project off the ground, but it introduces
a maintenance nightmare and is rarely
feasible in the long run.

Design Concerns: Maintainability

If you need a persistence solution that is
scalable, flexible, portable, and maintainable,
you are most likely looking to ORM (or
similar approaches) to meet your needs.
Homegrown solutions rarely work past the
initial stages of a project.

Design Concerns: Summary

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

● Object Relational Mapping (ORM)
○ Using a relational database to store and relate

objects
● NoSQL

○ Using a database for nothing more than record
storage

○ Highly optimized for insert and retrieve operations
● Object-oriented Database (OODB)

○ Using a database integrated to the point that
objects are stored "natively"

Techniques

● Using a relational database in conjunction
with frameworks is perhaps the most
common approach to object persistence

● Popular frameworks include Hibernate,
EclipseLink, and OpenJPA

Techniques: ORM

● Object-relational impedance mismatch
○ The principles of OOA/OOD/OOP aren't a good

match for a relational database
○ Inheritance, Encapsulation, Polymorphism, and

other concepts aren't supported by a relational
database
■ For example, inheritance hierarchies won't

map cleanly to tables
○ The winning approach will involve POJOs and

treat use the database as an information
repository and nothing more

○ Joins are particularly slow

Techniques: ORM

● JPA is an API, implemented by several
popular frameworks.

● JPA is the "official" Java ORM.
● JPA is defined by JSR 220 (JPA 1.0) and

JSR 317 (JPA 2.0)

Techniques: ORM - JPA

● The Java Persistence Query Language
(JPQL), similar to SQL, is used to interact
with Entities in a relational database.

● JPQL syntax is similar to that of SQL, but
operates on Entities rather than database
tables.

Techniques: ORM - JPA

● An entity is a lightweight persistence
domain object. This term is specific to the
Java Persistence API (JPA).

● Typically an entity represents a table in a
relational database, and each entity
instance corresponds to a row in that
table.

● The primary programming artifact of an
entity is the entity class, although entities
can use helper classes.

Techniques: ORM - JPA

An entity class must follow these six
requirements:

1. The class must be annotated with the javax.
persistence.Entity annotation.

2. The class must have a public or protected, no-
argument constructor. The class may have other
constructors.

3. The class and its methods and persisted member
variables cannot be declared final.

Concepts and Terminology: Entity

An entity class must follow these six
requirements:

4. If an entity instance is passed by value as a
detached object, such as through a session bean’
s remote business interface, the class must
implement the Serializable interface.

5. Entities may extend both entity and non-entity
classes, and non-entity classes may extend entity
classes.

Concepts and Terminology: Entity

An entity class must follow these six
requirements:

6. Persistent instance variables must be declared
private, protected, or package-private, and can
only be accessed directly by the entity class’s
methods. Clients must access the entity’s state
through accessor or business methods.

Concepts and Terminology: Entity

NoSQL is a generic term for database
systems that eschew the relational model for
gains in performance or scalability.

NoSQL databases are not typically built
around tables, and usually do not employ
SQL for data manipulation.

Techniques: NoSQL

This approach is useful when dealing with an
exorbitantly large amount of data, but won't
work if that data requires a relational model.

Rather than relate data elements to each
other, NoSQL provides fast storage/retrieval
of unrelated records.

Techniques: NoSQL

An object-oriented database (OODB) is
sometimes necessary when the complex
relationships between objects can't be easily
or efficiently mapped to the tables of a
relational database.
In practice, this technique is much rarer than
ORM.

Techniques: OODB

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

This is a topic that can easily be confusing,
largely because people use language
imprecisely and terms are often overloaded.

People may use the word "framework" to
refer to libraries, applications, providers,
databases, or APIs.

Providers: Terminology

Examples
● "Spring is a web framework that relies on

Hibernate for persistence."
● "Hibernate is an ORM framework that

supports JPA."
● "ORM is a framework for storing objects in

a database."
● "JPA is a Java framework for persisting

objects."

Providers: Terminology

● OpenJPA, Hibernate, etc., are persistence
providers (implementations)

● JPA is an API or interface (not an
implementation)

● Spring is an application framework
● ORM is a programming technique for

persisting objects

Providers: Terminology

● ORM
○ Java

■ Cayenne
■ EclipseLink (JPA, JAXB, JCA, SDO)
■ Hibernate (JPA)
■ OpenJPA (JPA)
■ ORMLite

○ C++
■ ODB
■ QxOrm

Providers

● NoSQL
○ Java

■ eXist (XML)
■ Jackrabbit (document)
■ OrientDB (document, graph)

○ C++
■ Clusterpoint (document)
■ mongoDB (document)

Providers

● OODB
○ Java

■ ObjectDB (JPA, JDO)
■ db4o

○ .NET
■ db4o

Providers

● JPA implementation
○ Apache 2.0 license (F/OSS)

● Developed from BEA's Kodo

Providers: OpenJPA

● JPA implementation
○ LGPL (F/OSS)

● High-level functions create buffer between
database interaction and object
manipulation

● Hibernate Query Language (SQL-like)

Providers: Hibernate

● Bundles 3 persistence solutions
○ XML Binding: JAXB and SDO
○ ORM: JPA 2.0 reference implementation
○ Database Web Services: JAX-WS and JAX-RS

● Developed from Oracle's TopLink
● Maintained by the Eclipse Foundation

Providers: EclipseLink

● Overview
● Concepts and Terminology
● Design Concerns
● Techniques
● Providers
● Summary

Persistence is one aspect of system design
that requires special attention if the end
product needs to be scalable, flexible,
portable, or maintainable.
There are many options and techniques.
Persistence isn't one of the "solved
problems" of computer science, but we have
a number of viable options.

Summary

● http://martinfowler.com/bliki/OrmHate.html
● http://blogs.tedneward.

com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
● http://database-programmer.blogspot.com/2010/12/historical-

perspective-of-orm-and.html
● "Persistence in the Enterprise" by Barcia, Hambrick, Brown, Peterson,

and Bhogal

Additional Reading

The End

