
JAVA CONCURRENCY

FRAMEWORK

Kaushik Kanetkar

Old days

One CPU, executing one single program at a time

No overlap of work/processes

Lots of slack time

CPU not completely utilized

What is Concurrency

Concurrency is the ability to run several parts of a
program or several programs in parallel.

Concurrency can highly improve the throughput of a
program if certain tasks can be performed
asynchronously or in parallel.

NEED FOR CONCURRENCY

• Better resource utilization

• Simpler program design

• More responsive programs

Better resource utilization

Imagine an application that reads and processes files
from the local file system. Lets say that reading of file
from disk takes 5 seconds and processing it takes 2
seconds. Processing two files then takes

5 seconds reading file A
2 seconds processing file A
5 seconds reading file B
2 seconds processing file B
----------------------- 14 seconds total

Most of the CPU time is spent waiting for the disk to
read the data. The CPU is pretty much idle during that
time. It could be doing something else. So, by better
utilization:

5 seconds reading file A
5 seconds reading file B + 2 seconds processing file A
2 seconds processing file B
----------------------- 12 seconds total

Hence, concurrency gives a faster performance.

Simpler program design

• Single threaded application, you would have to keep
track of both the read and processing state of each
file.

• Multi-threaded: you can start two threads that each
just reads and processes a single file.

• Reading / processing from 10 files using single
thread : 10 such functions + files.

• Reading / processing from 10 files using
concurrency: 1 such function where 10 threads
can act on it.

More responsive programs

Imagine a server application that listens on some port
for incoming requests. when a request is received, it
handles the request and then goes back to listening.
The server loop is sketched below:

while(server is active)
{
 listen for request process
request
}

If the request takes a long time to process, no new clients
can send requests to the server for that duration. Only
while the server is listening can requests be received.

An alternate design would be for the listening thread to
pass the request to a worker thread, and return to
listening immediately. The worker thread will process the
request and send a reply to the client.

while(server is active)
{
 listen for request process
request
 hand request to worker
thread }

AMDAHL’S LAW

If F is the percentage of the program which can
not run in parallel and N is the number of
processes then the maximum performance gain
is
 1/ (F+ ((1-F)/n)).

• Performance gain using Amdahl’s Law:

Issues with concurrency

Though some parts of a multithreaded applications is
simpler than a singlethreaded application, other parts
are more complex. Code executed by multiple threads
accessing shared data need special attention. Thread
interaction is far from always simple. Errors arising
from incorrect thread synchronization can be very
hard to detect, reproduce and fix.

• More complex design

Issues with concurrency

When a CPU switches from executing one thread to
executing another, the CPU needs to save the local
data, program pointer etc. of the current thread, and
load the local data, program pointer etc. of the next
thread to execute.

Context switching is not cheap

• Context switching overhead

Issues with concurrency

A thread needs some resources from the computer
in order to run. Besides CPU time a thread needs
some memory to keep its local stack. It may also take
up some resources inside the operating system
needed to manage the thread.

• Increased resource comsumption

The framework:

• Task Scheduling: The Executor is a framework for
handling the invocation , scheduling and execution of
tasks.

• Concurrency: Using classes like map, lists and queues.
• Atomic variables: Classes for atomic manipulation of

single variables provide higher performance.
• Locking: Implementing locking mechanism using the

sychronized keyword.
• Timers: Accurate timing measurements upto

nanoseconds usually for timeouts.

Advantages of the framework:

• Reusability: Many commonly used classes are
implemented.

• Better Performance: A highly optimized approach
with faster responses.

• Higher reliability: With all locks, and synchronizing
mechanisms, it is highly reliable.

• Maintainability and scalability: The programs are
easy to handle and maintain for further development.

• Better productivity: Easier to debug.

PROCESSES VS THREADS

• Process: A process runs independently and isolated
of other processes. It cannot directly access shared
data in other processes. The resources of the process
are allocated to it via the operating system, e.g.
memory and CPU time.

• Threads: threads are so called lightweight processes
which have their own call stack but an access shared
data. Every thread has its own memory cache. If a
thread reads shared data it stores this data in its own
memory cache. A thread can re-read the shared data

Creating and Starting Threads

Thread thread = new Thread(); // Creates a thread
thread.start(); // Starts the thread

Ways to point to the code for a thread to start:

• Thread Subclass
• Runnable Implementation

Thread Subclass

To create a subclass of Thread and override the run()
method. The run() method is what is executed by the
thread after you call start().

public class MyThread extends Thread
{ public void run()
{ System.out.println("MyThread running"); } }

To create and start the above thread:
MyThread myThread = new MyThread();
myThread.start();

Runnable Implementation

The second way to specify what code a thread should
run is by creating a class that implements
java.lang.Runnable. The Runnable object can be
executed by a Thread.

public class MyRunnable implements Runnable
{ public void run()
{ System.out.println("MyRunnable running"); } }

To create and start the above thread:
Thread thread = new Thread(new MyRunnable());
thread.start();

Subclass or Runnable method ?

• Both methods work.

• Runnable method preferred .

• Easy to queue up the Runnable instances (from the

thread pool) until a thread from the pool is idle.
This is a little harder to do with Thread subclasses.

Common pitfall:
Calling run() instead of start()

Thread newThread = new Thread(MyRunnable());
thread.run(); //should be start();

• run() method is executed by the thread that created

the thread.

• So, necessary to call start() and not run()

Race Conditions and Critical sections

• More than one thread writing to shared resources.

• ‘A’ thread reads from shared “data” , while B does

some writing on the “data”. Now when ‘A’ reads again
from “data” it has corrupt data in hand.

• Code section that leads to race conditions is called a

critical section

Thread safety and shared resources

• Code that is safe to call my multiple threads
simultaneously is thread safe.

• Thread safe code cause no race conditions.

• Multiple threads updating shared resources leads to

race conditions.

Race Conditions and Critical sections

• Local variables: Stored in stack of each thread. So
these are thread safe !

public void someMethod()
{
 long threadSafeInt = 0;
 threadSafeInt++;
 }

Race Conditions and Critical sections

• Local Object references: Stored in stack of each
thread. Although stored in the “shared” heap, it is
also thread safe !

public void someMethod()
{
 LocalObject localObject = new LocalObject();
localObject.callMethod();
method2(localObject);
 }
public void method2(LocalObject localObject)
{
 localObject.setValue("value");
 }

Race Conditions and Critical sections

• Object members: Stored in heap alongwith other

objects. Two threads calling a method on the same
object and updating it- Not Thread safe !

public class NotThreadSafe
{ StringBuilder builder = new StringBuilder();
public add(String text)
{ this.builder.append(text);
}}
If two threads call the add() method simultanously on
the same NotThreadSafe instance then it leads to race
conditions

Synchronized blocks

• Block of methods or blocks of code can be marked as
synchronized in order to avoid race conditions.

• Following is a synchronized block:

public void add(int value)
{ synchronized(this)
{
this.count += value;
}
}

Synchronized blocks

• Synchronized construct takes an object in
parantheses.

• Object taken in parantheses in called as the monitor
object.

• Code synchronized on the monitor object.
• Only one thread can execute inside a code block

synchronized on the same monitor object.

Thread signaling

• The purpose of thread signaling is to enable threads
to send signals to each other indicating data is ready.

1. Signaling via Shared objects
A simple way for threads to send signals to each other is
by setting the signal values in some shared object
variable.

2. Busy wait
A thread which is to process the data is waiting for data
to become available for processing. When a certain
function returns true, it can then proceed.

Thread signaling

3. Wait(), notify(), notifyAll()
The waiting thread with wait() becomes inactive until it
receives a notify() call. (Better CPU utilization)

4. Missed signals
A call to notify() before a call to wait() results in missed
calls. Such calls need to be stored for the system to
know.

5. Spurious wakeups
Threads may wake up without any notify(). Guarding
required to avoid such wakeups.

Thread signaling

6. Multiple threads waiting for same signals
Many threads waiting for notify() call but only one
should be passed through.

7. Don’t call wait() on constant objects
A wait() on the first instance of an object may risk being
woken up by the notify() on some other constant
object.

Deadblocks

• A deadlock is when two or more threads are blocked
waiting to obtain locks that some of the other
threads in the deadlock are holding.

Thread 1 locks A, waits for B Thread 2 locks B, waits for A

• A needs a unlock from B , but be is itself locked. B
needs unlock from A, but A is also locked !!

Deadblocks prevention

1. Lock Ordering
Multiple threads needing locks but obtaining in
different order.
Make sure the locks are obtained in the same order.

2. Lock Timeout
Thread attempting to obtain a lock will wait only a
certain amount of time and then give up.

Deadblocks prevention

3. Deadlock Detection
Used wherever lock ordering is not possible and lock
timeout is not feasible.
Thread obtaining a lock is noted in a data structure of
threads and locks.
Can detect if a deadlock can happen !

Semaphores

A thread synchronization construct that can be used
either to send signals between threads to avoid missed
signals, or to guard a critical section like you would
with a lock.

1. Simple semaphore
Take() method makes signal=true and calls to notify().
Release() method will call wait() only if take() has been
called.

Semaphores

2. Using semaphores for signaling.
Take() method makes signal=true and calls to notify().
Release() method will call wait() only if take() has been
called.

3. Counting Semaphore
Counts the number of signals sent using the number of
take() calls.

Blocking Queue

A thread trying to dequeue from an empty queue is
blocked until some other thread inserts an item into the
queue.

 A thread trying to enqueue an item in a full queue is
blocked until some other thread makes space in the
queue

Thread pools

• Thread Pools are useful when you need to limit the
number of threads running in your application at the
same time.

• Performance overhead in creating a new thread with
respect to stack.

• Instead of starting a new thread, the task can be
passed on the thread pool.

• An idle thread from the pool will pick up the task.
• Used in multi-threaded servers. The threads in the

thread pool will process the requests concurrently.

Code walkthrough:

• Following is a code which creates 10 threads and
runs them.

• One can see which thread is running currently.
• It is done using the getName() method call.
• When you see the output , you will realize that even

“main” is a thread.

public class ThreadExample
{
 public static void main(String[] args){
System.out.println(Thread.currentThread().getName()
);
for(int i=0; i<10; i++)
{ new Thread("" + i)
{ public void run()
{ System.out.println("Thread: " + getName() + "
running");
 }
 }.start();
 }
 } }

Output:
main
thread: 0 running
thread: 1 running
thread: 2 running
thread: 3 running
thread: 4 running
thread: 5 running
thread: 6 running
thread: 7 running
thread: 8 running
thread: 9 running
If the start() calls to thread are commented out, then
none of the threads will run , next slide ->

public class ThreadExample
{
 public static void main(String[] args){
System.out.println(Thread.currentThread().getName()
);
for(int i=0; i<10; i++)
{ new Thread("" + i)
{ public void run()
{ System.out.println("Thread: " + getName() + "
running");
 } };
//.start();
 }
 } }

Output:
main

Thus only the main thread is running and none of the 10
threads have been given a start().

