
Windows Presentation
Foundation
Presentation for CSCI 5448 OO/AD

David Ellis (ellisda@colorado.edu)

Intro - Windows Presentation
Foundation

Introduced in .Net 3.0 alongside:
● .. Communication Foundation (WCF)

○ SOAP / Web services
● .. Workflow Foundation (WWF)

○ Workflow Engine / Activities
● .. Presentation Foundation (WPF)

○ GUI framework

● Released in Nov '06
● Pre-installed on Windows Vista

Background - WPF

Windows Forms (prev GUI framework)
○ Pixel-based rendering with GDI+
○ Not suited for 3D or video / animation
○ IDE "...Designer.cs" files plus A LOT of code behind

Presentation Foundation (WPF)
○ Rendered with DirectX, allows mid-pixel scaling to

various resolutions
○ First order support for animations
○ Extensible Application Markup Language (XAML)

■ !!! Declarative syntax helps reduce code behind

Patterns - GUI Layers

GUIs are generally wrapped around existing
code. The "top layer" in multi-layered systems.

● GUI-specific patterns
○ Model View Controller (MVC)
○ Model View ViewModel (MVVM)

●
● Supporting Patterns

○ Observer

Data Binding (Observer) - WPF

Instead of using code behind to set
myTextBox.Text = customer.CustomerName;

Use declarative XAML
<TextBox Text="{Binding CustomerName}" />

GUI observes changes via INotify... interface

Data Binding programatically

Binding is a class, not just xml syntax
<TextBox Text="{Binding CustomerName}" />

.. done programmatically, looks like
Binding binding = new Binding("CustomerName");
textBoxCusto.SetBinding(TextBox.TextProperty, binding);

The "{Binding ..}" XAML is a MarkupExtension
● a kind of syntax "sugar"
● ex: {StaticResource ..} we'll see later in demo

Observer Pattern for Data Binding
public class Customer : INotifyPropertyChanged
{
private string _customerName;
public string CustomerName {
 set
 {
 _customerName = value;
 PropertyChanged(this,

new PropertyChangedEventArgs("CustomerName"));
 }
}

public event PropertyChangedEventHandler PropertyChanged;
}

Notify any Observers that
CustomerName property has
changed. When Bindings are created,
GUI becomes an observer

BindingModes: Do it My Way

OneWay Bindings: Source to Target (keeps GUI current)
TwoWay Bindings: Keeps GUI and backend synchronized

UpdateSourceProperty - controls how to update source:
○ LostFocus: When user presses Enter, or Tabs away from TextBox
○ PropertyChanged: After each Keystroke, backend is updated

Advanced Data Binding - WPF

Binding Converters augment bindings:
Ex: Show or Hide a control depending on a boolean
<Grid Visibility="{Binding IsDisabled,
Converter={StaticResource bool2VisibilityConverter}}"
/>

ex: Boolean.False VisibilityMode.Hidden

MultiBindingConverters can combine multiple inputs and
produce a single output

ex: Boolean.False + Status.Warning Result.Continue

ValidationRules and IDataErrorInfo provide extensible
mechanisms validate user input and notify the user.

Advanced Data Binding - WPF

ListCollectionView - allows List<T> to support SelectedItem
<ListView ItemsSource="{Binding Customers}"
IsSynchronizedWithCurrentItem="True" />

codebehind can get currently selected item
List<Customer> customers = ... //from somewhere
int selectedIndex = CollectionViewSource

.GetDefaultView(customers).CurrentPosition;

● A lot of magic going on under the hood here

REF: Bea Stollnitz's Blog (ex-Microsoft employee, now running Zag Studios)
○ google "CollectionView wpf" #2 hit (best data binding info on web)

Data Binding Pros:
● Decouples model classes from codebehind
● Greatly reduces size of codebehind
● XAML is more reusable than codebehind
● GUI is tolerant of failed bindings

Data Binding Cons:
● Since Bindings are established at runtime, failed

bindings are not found until runtime.
○ ex: {Binding misspelled_PropertyName}
○ Debug TraceLevel helps diagnose failures

Taking a step back - code quality

Model / View / ViewModel (MVVM)

Views = GUI layouts /
dialogs

ViewModels support
each view; use
models

Models = data classes

Key Benefits:
Centralizes View-Support
code; allows Data Models to
be GUI-agnostic; Testable.

WPF & Design Patterns

Design Patterns are general solutions to
common problems that the language does not
solve for you.

WPFs use of data-binding, extensive Style and
ControlTemplate APIs and platform-like support
of the MVVM pattern help solve some
problems, pre-pattern.

 now to Styles, and Animations
(StoryBoards)

SpinningBlinking.. Problem

WPF Spinning Blinking Styles

Instead of having to specialize each control

WPF Allows us to
○ Establish Transformations
○ Animate Properties (ex: Opacity)
○ Animated Transforms (ex: Angle)

And Styles make it applicable to any
FrameworkElement

WPF Type Hierarchy

UIElement
and
FrameworkElement

are very high in
the hierarchy.

All Controls
are FrameworkEl..;
support Transforms
and Animations

DirectX - Enabling Transforms

In WindowsForms, any UserDraw control was
responsible for drawing pixels.

In WPF, DirectX can easily manipulate the
drawing before rasterizing it to the screen.

Common Transforms:
● Rotate Transform
● SkewTransform
● ScaleTransform

Spinning: start with the transform
<Rectangle>

<Rectangle.RenderTransform>
<RotateTransform Angle="23" />

</Rectangle.RenderTransform>
</Rectangle>

<Storyboard x:Key="spinningStoryboard">
<DoubleAnimation Storyboard.TargetProperty

="RenderTransform.Angle"
From="0" To="360" Duration="0:0:5"

RepeatBehavior="Forever"/>
</Storyboard>

when attached, we'll
animate the Angle
property (i.e spinning)

Programmatically: Start Animation

Transform transform = new RotateTransform();
rectangle.RenderTransform = transform;

//define the animation duration, range, etc.
var spinningAnimation = new DoubleAnimation(0, 360, new

Duration(TimeSpan.FromSeconds(2)));

//Tell the RotateTransform to begin an animation
transform.BeginAnimation(RotateTransform.AngleProperty,

spinningAnimation);

Abstraction: The Transform supports
animation

Start from XAML

Most WPF developers play a game (challenge)
● All XAML, no codebehind

We can trigger spinning on the ..Loaded event
<Rectangle.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.Loaded">
 <BeginStoryboard><Storyboard>
 <DoubleAnimation Storyboard.TargetProperty

="RenderTransform.Angle"
 From="0" To="360" Duration="0:0:5"

/>
 </Storyboard></BeginStoryboard>
 </EventTrigger>
</Rectangle.Triggers>

Reduce / ReUse / ReCycle (Code)

Write the animation once, and put it in a Style

<Style x:Key="SpinningStyle">
 <Setter Property="UIElement.RenderTransform"

Value="{StaticResource rotateTransform}" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.
Loaded">
 <BeginStoryboard Storyboard="{StaticResource

spinningStoryboard}" />
 </EventTrigger>
 </Style.Triggers>
</Style>

RotateTransform was already
defined as Resource, just re-
use it

give it a name, so
we can find it later

ReUse / ReCycle (code)

Now we can apply that spinningStyle to any
FrameworkElement.

And we can build other styles upon it
<Style x:Key="BlinkingSpinningStyle"

BasedOn="{StaticResource SpinningStyle}">
 <Style.Triggers>
 <EventTrigger RoutedEvent="FrameworkElement.
Loaded">
 <BeginStoryboard Storyboard

="{StaticResource blinkingStoryboard}" />
 </EventTrigger>
 </Style.Triggers>
</Style>

Blinking Style - Animates Opacity

UIElements also support Animating properties:
○ Opacity, Color, Width, Margins, etc.

<Style x:Key="BlinkingStyle">
...
 <BeginStoryboard><Storyboard>
 <DoubleAnimation

Storyboard.TargetProperty="Opacity"
 From="1.1" To="0.1"

Duration="0:0:0.8" AutoReverse="True" />
 </Storyboard></BeginStoryboard>
...
</Style>

SpinningBlinking...

It moves... (download code first)

Other Topics

You can create composite custom controls, that
derive from UserControl.
● Adding DependencyProperties allows

Binding
● AttachedProperies allow you influence

parent controls

High Level Shader Language (HLSL)
● DirectX architecture allows some impressive

2D/3D effects

UserControl Example from Day Job

Single UserControl (circled in Red): bars across bottom
have color and size data-bound to backend model.

ToggleButtons (circled
in Green) are
TwoWay bound to
UserControl
DependencyPropertie
s

This graph is re-used
in 3 different
applications at my
work.

End

More Info:
http://www.zagstudio.com/blog

Code for Download
https://docs.google.com/open?id=0B-
7GE2fNRs7SRjZfVUpTQ1p2VjA

ellisda@gmail.com

