
Spring

Enterprise Java Made Easier

Ryan Cutter
November 2011

About Me

● First-semester CAETE Graduate student
● Used Enterprise JavaBeans, Servlets, etc from late 1990s

until 2002
○ Not ideal for large application development...

● Flew in the U.S. Navy from 2003 until 2011
● Resumed Java development last year

○ Perhaps the greatest advancement in enterprise
application development during my time away was
Spring!

■ Maybe StackOverflow, too ;-)

Agenda

● What is Spring?
● Beans and Dependency Injection

○ Configuring with XML
○ Autowiring, Annotations, and Autodiscovery

● Aspect-Oriented Programming (AOP)
● Data Access / Object-Relational Mapping (ORM)
● Model-View-Controller framework (MVC)
● Building RESTful applications
● Other Spring components

● Along the way we'll code some simple apps to demonstrate
bean wiring, AOP, MVC and REST

What is Spring?

● Enterprise JavaBeans (EJBs) made important strides in
server-side enterprise services but also created discontent

○ Proved to be too unwieldy
○ Plain old Java object (POJO)-centric frameworks like

Spring rapidly supplanted EJB as the true Java standard
● Spring was created by Rod Johnson in Expert One-on-One:

J2EE Design and Development (2002) and released soon
thereafter

● Open source framework dedicated to principals of:
○ Simplicity
○ Testability
○ Loose coupling

● Spring simplifies Java development

What is Spring?

● Lightweight development with POJOs
○ No more heavy/invasive demands from EJBs, etc

● Loose coupling through dependency injection (DI) and
interface orientation

○ Objects given dependencies at creation time
● Declarative programming through aspects and common

conventions
○ Aspect-oriented programming (AOP) captures

functionality in reusable components
● Boilerplate reduction through aspects and templates

No, really: What is Spring?

● Spring Basics
○ Dependency Injection (DI)
○ Aspect-Oriented Programming (AOP)

● Core support for application development
○ Data persistence
○ Transaction management
○ Spring MVC (web framework)
○ Spring Security

● And so on (more functionality being rolled out all the time)
○ Spring Web Flow
○ Remote services
○ Messaging
○ RESTful resources

Beans - Containers

● Containers are the core of Spring Framework
○ Objects' lifecycles managed here cradle to grave

● Use DI to manage application's components
● Makes objects easier to understand, reuse, and test

○ ie, Wires the beans!
● Two kinds of containers:

○ Bean factories - Simple, low level
○ Application contexts - More commonly used

Beans

● Spring's most basic operation is wiring beans (slang for DI)
● Wiring sometimes accomplished using XML files

○ I know what you're probably saying but keep in mind the
developer decides how much to rely on XML

■ Spring 3 offers an almost no XML implementation
○ XML file contains configuration management for all

components which associates beans with each other
● Let's see this in action

○ Create animals in a Zoo and wire their corresponding
beans

■ The Cheetah class on next page looks a little goofy
but bear with me...it will be used to explain multiple
concepts

Beans - The Zoo

package org.ryancutter.zoo;
public interface ZooAnimal {
 void talk() throws ZooAnimalException;
}

package org.ryancutter.zoo;
public class Cheetah implements ZooAnimal {
 private int speedMPH = 10;

 public Cheetah() {}
 public Cheetah(int speedMPH) { this.speedMPH = speedMPH; }
 public void talk() throws ZooAnimalException {
 System.out.print("I am Cheetah, hear me roar");
 }

 private int numChildren;
 public int getNumChildren() { return numChildren; }
 public void setNumChildren(int numChildren) {
 this.numChildren = numChildren;
 }
}

Beans - The Zoo

[zoo.xml]
<?xml version="1.0" encoding="UTF-8"
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd">
 <bean id="cary" class="org.ryancutter.zoo.Cheetah">
 <constructor-arg value="30" />
 <property name="numChildren" value="4" />
 </bean>
</beans>

● The <beans> element contains some standard Spring
namespace schema

● cary the Cheetah is defined in the <bean>
○ Pass args into constructor with <constructor-arg>
○ Inject properties via getter/setters with <property>

■ Spring will convert type as needed (String -> int)

Beans - The Zoo

ApplicationContext ctx = new
 ClassPathXmlApplicationContext("org/ryancutter/zoo/zoo.xml");
ZooAnimal animal = (ZooAnimal) ctx.getBean("cary");
animal.talk();

● �ClassPathXmlApplicationContext is just one of several ways to
load context definitions

○ When building web apps, XmlWebApplicationContext will
probably be used

● Referencing other beans is easy. Let's record a favorite
toy by adding a private Toy attribute named "favoriteToy"
with a getter and setter. ChewToy is of type Toy.

<bean id='chewtoy" class="org.ryancutter.zoo.ChewToy" />

<bean id="cassie" class="org.ryancutter.zoo.Cheetah">
 <constructor-arg value="20">
 <property name="numChildren" value="1" />
 <property name="favoriteToy" ref="chewtoy" />
</bean>

Beans - Wiring at runtime

● Complex applications certainly will need dynamic wiring
● One way to do with is with the Spring Expression Language

(SpEL)
○ Wires values into bean property/constructor arguments

using expressions evaluated at runtime
○ #{ } markers contain SpEL expressions
○ Let's create another Cheetah ("chester") that copies the

number of children from our previous bean ("cary") using
SpEL

<bean id="chester" class="org.ryancutter.zoo.Cheetah">
 <property name="numChildren" value="#{cary.getNumChildren()}" />
</bean>

Beans - Autowiring

● Using pure XML to configure doesn't necessarily scale
● Autowiring reduces <property> and <constructor-arg> elements

○ Four ways to automatically wire beans:
■ byName

■ Match properties with beans of same name
■ byType

■ Match properties with beans whose types are
assignable

■ constructor
■ Match constructor with beans whose types are

assignable to constructor arguments
■ autodetect

■ constructor first, then byType

Beans - Autowiring byName

<bean id='favoriteToy" class="org.ryancutter.zoo.ChewToy" />

<bean id="cole" class="org.ryancutter.zoo.Cheetah" autowire="byName">
 <constructor-arg value="20" />
 <property name="numChildren" value="1" />
</bean>

● �byName autowiring establishes convention where property
will automatically be wired with bean of same name

○ Consider all properties of "cole" the Cheetah
(speedMPH, numChildren, favoriteToy) and look for
beans declared with same name as properties

■ Cheetah.setFavoriteToy(Toy) will be called with
ChewToy

Beans - Annotations

● Using annotations to automatically wire beans widely used
○ Similar to autowire XML attribute but more functional
○ Not enabled by default - requires some configuration
○ @Autowired is Spring-specific but JSR-330 (standards-

based DI) supported as well with @Inject

@Autowired
public void setFavoriteToy(Toy toy) {
 this.favoriteToy = toy;
}
[or]
@Autowired
private Toy favoriteToy;

● Both do same thing, will initiate byType autowiring to find
bean of type Toy.

Beans - Autodiscovery

● Like annotations, autodiscovery requires some configuration
to use

● Further reduces reliance on XML
● @Component one of several special stereotype annoations

○ General-purpose indicating class is Spring component

package org.ryancutter.zoo
import org.springframework.stereotype.Component;

@Component
public class ChewToy2 implements Toy {}

● When zoo package is scanned by Spring, it will register
chewtoy bean automatically

○ @Component("name") will declare bean name

AOP

● OOP is not suited for use in all circumstance
○ Consider how cross-cutting concerns (like security and

logging) are integrated into large web applications
■ A cross-cutting concern is any functionality that

affects multiple parts of an application
■ Separating these challenges from business logic is

the heart of aspect-oriented programming (AOP)
● Aspects are an alternative to inheritance and delegation
● Define common functionality once and declaratively define

how and where it is applied
○ Modules much cleaner and focus on primary concern

AOP

● Like OOP, AOP would take a long time to explain...
● Just realize we're injecting behavior into different points of a

program's execution sequence
● Along with Spring, other big AOP frameworks include

AspectJ and JBoss
○ Spring borrows liberally from AspectJ

● Next example shows things we'd like to do before and after
a golf stroke

AOP - An Example

package org.ryancutter.golf;

public class GolfSwing {
 public void lineUpShot() { // before shot
 System.out.println("I am lining up my shot");
 }

 public void track() { // after shot
 System.out.println("I am tracking the ball to make sure I can find it");
 }

 public void curse() { // after bad shot
 System.out.println("#*$*&# @&@");
 }
}

AOP - An Example

<bean id="golfswing"
 class:"org.ryancutter.golf.GolfSwing" />

<aop:config>
 <aop:aspect ref="golfswing">
 <aop:before pointcut= "execution(* org.ryancutter.golf.Golfer.golf(..))"
 method="lineUpShot" />
 <aop:after-returning pointcut="execution(*org.ryancutter.golf.Golfer.golf(..))"
 method="admire" />
 <aop:after-throwing pointcut="execution(* org.ryancutter.golf.Golfer.golf(..))"
 method="curse" />
 </aop:aspect>
</aop:config>

● pointcut defines join points (where/when advice is executed)
○ Written in AspectJ's pointcut expression syntax

● Advice defines the action to be taken (the method)
● An <aspect> is the combination of pointcut and advice

AOP - Further uses

● This is a trivial example
○ A more advanced app would want parameters passed

into advice
○ As with DI, XML reliance can be reduced by annotation

● Ultimately, Spring AOP is weak compared to AspectJ's
capabilities

○ Suitable for some applications but AOP-intensive
applications might want to use AspectJ

○ AspectJ aspects are largely independent of Spring so
both can be used simultaneously

○ Common to inject dependencies into AspectJ aspects
■ Let's save that one for another lecture...

Data Access

● Data access object (DAO) provides means to read/write
data to the database

● Service objects access DOA through interface
○ In fact, Spring constantly encourages interface reliance

Data Access

● Spring separates fixed and variable portions of data access
process into classes:

○ Templates - Fixed
■ Connect to data, start transaction, commit, close
■ Configured as bean or use support classes

○ Callbacks - Custom data access
■ Execute transaction, return data
■ This is where we really code the logic

● Spring's JDBC template framework eliminates all that
custom coding once required

○ No more connection handling, statement creation,
exception handling code

○ Free to focus on what you wanted to do in the first place

Data Access - ORM

● Simplified JDBC is nice but building complex applications
probably requires object-relational mapping (ORM) services

● Spring supports Hibernate, iBATIS, JDO, and JPA
○ Hibernate is a very popular complement to Spring

● As with JDBC, Spring offers templates to manage Hibernate
sessions, catching framework-specific exceptions, etc

○ However, HibernateTemplate no longer considered optimal
with introduction of contextual sessions

○ Simply wire a Hibernate session directly into your DAO
○ Spring's Hibernate session factory beans provide access

to Hibernate's SessionFactory
■ As usual, the coder can decide level of XML reliance
■ Not sufficient time for a code example here

MVC

● Spring's web framework is based on the Model-View-
Controller (MVC) pattern

○ This is another topic which is the subject of many books
but in general....

○ Request goes to Spring's DispatcherServlet where it is sent
to a Spring MVC controller (based on handler mapper) to
be processed

○ Controller packages up model data and identifies the
appropriate view before DispatcherServlet renders the result
(often a JSP but could be other things)

MVC - An example

● Let's implement a "Hello World" example in which a static
page is served up

○ Assume HelloService is a class that simply returns a
"Hello World" String when asked getGreeting()

● If we declare a DispatcherServlet in web.xml called "hello", this
might be hello-servlet.xml:

<beans [...lots of schema omitted...]>
 <mvc:resources mapping="/resources/**" location="/resources/" />
 <context:component-scan base package="org.ryancutter.hello.mvc" />
</beans>

● mvc:resources states content will be served from /resources
● context:component helps get our class automatically discovered

and registered as a bean

MVC - An example

package org.ryancutter.hello.mvc;
[...necessary imports...]

@Controller
public class HelloController {
 private HelloService helloService;
 @Inject
 public HelloController(HelloService helloService) {
 this.helloService = helloService;
 }

 @RequestMapping(("/"))
 public String showHelloPage(Map<String, Object> model) {
 model.put("greeting", helloService.getGreeting());
 return "hello";
 }
}

● �@Controller means this is a controller class
● @Inject injects HelloService when controller is instantiated
● @RequestMapping identifies showHelloPage as a request-

handling method for all requests to /

MVC - An example

● DispatcherServlet must consult a view resolver to serve output to
user

● View resolver maps view name to JSP (although Velocity or
other view technologies can be employed)

● Many different kinds of Spring view resolvers but this
example will use InternalResourceViewResolver

● Add to hello-servlet.xml:
<bean class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/views/" />
 <property name="suffix" value=".jsp" />
</bean>

● hello.jsp should be in /WEB-INF/views/ with appropriate
code to serve "Hello World" in greeting element

MVC

● Obviously this is a ludicrously simple example but presented
for time constraints

● Spring MVC offers powerful tools to build complex web
layers out of near-POJOs

○ Controllers and view resolvers enjoy loose coupling
■ Controllers delegate to other beans using

dependency injection
■ Handler mappings choose controller, view resolvers

choose how results displayed, and the two operate
independently

REST

● Spring 3 moved aggressively to support Representational
State Transfer (REST)

● REST is a simpler alternative to SOAP whose popularity
has increased substantially of late

● REST is focused on transferring state of resources
○ http://www.ryancutter.org/HelloWorld/greetings/19

■ Use HelloWorld servlet to access greeting's 19th
resource

■ Perhaps greeting #1 is "Hello World" and #19 is
"Hola Mundo"

● Spring REST correlates tightly with Spring MVC so previous
example needs only to be slightly modified to be RESTful

○ Here, HelloWorld holds greetings in different languages

REST - An example

package org.ryancutter.hello.mvc;
[...necessary imports...]

@Controller
@RequestMapping("/greetings")
public class HelloController2 {
 private HelloService helloService;
 @Inject
 public HelloController2(HelloService helloService) {
 this.helloService = helloService;
 }

 @RequestMapping(value="/{id}", method=RequestMethod.GET)
 public String getGreeting(@PathVariable("id") long id, Model model) {
 model.addAttribute(helloService.getGreetingById(id));
 return "greetings/view";
 }
}

● Recall �@RequestMapping indicates which requests to handle
○ getGreeting() method will respond to GETs and grab {id}

from URL placeholder

REST

● Spring MVC controllers can field requests to manipulate
RESTful resources

● While we only looked at a simple GET, Spring can obviously
create controllers to handle POST, PUT, and DELETEs too

● Spring can represent data in a format preferred by the
client

○ ContentNegotiatingViewResolver can select best view in view-
based responses

○ Annotations in controller handler methods can assist
with converting returned values into responses

● RestTemplate provides template-based methodology to
consuming RESTful resources

Other Spring components

● Spring is a vast, sprawling framework with many
components that couldn't be discussed today

● Other key elements of Spring:
○ Transactions: Spring enables developer to declaratively

apply transactional policies in objects using AOP
○ Web Flow: Spring Web Flow framework builds

conversational, flow-based web applications
○ Security: Spring has a full featured security layer
○ Remote Services: Support for remoting technologies is

baked in
○ Messaging: Spring can be used with JMS to

asynchronously message between applications

Spring - In closing

● At its heart, Spring strives to be a loosely coupled
framework dedicated to making Java easier to use

● In early Spring releases, focus on heavy, XML-centric
configuration structures turned some potential adopters off

○ Recent Spring versions continue to remove the focus on
XML and allow greater flexibility

● Developers wishing to employ DI and AOP in a complex
web application would be hard pressed to find a more full,
rich set of capabilities

○ Spring's ability to be used in components allows for side-
by-side implementation with other technologies

Questions?

Check out http://www.springsource.org or Spring in Action
(3rd Ed) by Craig Walls for more information

