
 
Meeting of Functional and Object Oriented Languages

Jessica Ebert
CSCI 5448, Fall 2011

 Scala is a hybrid language that uses ideas from both the
functional and object oriented programming ideas

 It arises from the intention of creating a programming language
that removed a lot of the hassle from Java and was user friendly

 The mantra of Scala is to create highly modular elements of a
program

o There are very few hard-written links or references to other objects or
instances in Scala. Most modules can be easily ported to be reused.

 Scala was runs using the Java Virtual Machine and is compatible
with every Java library.

 Its relation to Java makes it very easy to switch to.

 Scala is not just an academic language, but has made impressive
inroads into the corporate world.

 Scala was designed and named from the idea that a program
should contain components that are reusable and be easily
scalable.
o The need for reusable and scalable is some of the main rational for

adding the functional language elements

 Scala’s feature’s are generally directed for the creation of
modular programs.
o Minimizes hard links to specific components

o Allows for abstraction over the required support and services required.

 One of the key notions of Scala is “immutability first”
o Having immutable code makes it much easier to create modular code.

 Scala is a hybrid language

 Combines object-oriented and functional programming
o Blends both worlds seamlessly

o Enables the programmer to use the Java open-source availability

o Uses the principles from Haskell and ML for functional
programming

Scala

Java

Haskell ML

 Designed in 2001 by Martin Odersky
o Along with his group at ÉCOLE POLYTECHNIQUE FÉDÉRALE DE

LAUSANNE (EPFL)

 Odersky worked on programming language fundamentals
and became fascinated with the idea of simplifying and
improving Java.

 In 1995 he worked with Philip Wadler to write a functional
language that compiled to Java Bytecodes,
o This was called Pizza.

 Next he developed GJ, a new javac compiler, then Java
Generics.

 He designed Scala with the idea of making a user friendly
language that combined functional and Object oriented
programming that eliminated the restrictions in Java.

 Scala was first publicly released in 2003, since then it has
been fully supported and gaining popularity

(Scala, 2008)

 Anything that looks like a language level keyword for
nearly any object oriented language is probably defined in
the library.

 Because Scala compiles to Java bytecode, it enables you to
use the plentiful Java resources.
o You can even use the libraries that are available for Java

 The Java bytecode basis has an ever further benefit, it can
be almost seamlessly integrated with any system that can
be with Java.

module Main where

 import System.Environment

 fibo = 1 : 1 : zipWith (+) fibo (tail fibo)

main = do

 args <- getArgs

 print (fibo !! (read(args!!0)-1))

public class Fibonacci {

 public static long fib(int n) {

 if (n <= 1) return n;

 else return fib(n-1) + fib(n-2); }

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 for (int i = 1; i <= N; i++) System.out.println(i + ": " +

fib(i));
 }
}

o While Scala infers types, this recursive value needs to be defined so
that Scala knows to run it on a stream and not another unrelated type.

o The #:: is searched by Scala to find a conversion type that has the #::
command

• This is why Stream was defined earlier, so that Scala knew to find a
conversion type that had the method.

• Similarly to java, there is the standard main argument

o The ability to infer a conversion type is one of the best features of
Scala. However, it can be dangerous too.

import scala.math.BigInt
lazy val fibs: Stream[BigInt] = BigInt(0) #::
 BigInt(1) #::
 fibs.zip(fibs.tail).map { n => n._1 + n._2 }

 It is not necessary to declare a return type, even if this were to
return something
o The last line of an application, if it is a value, is assumed to be the return

object.

o Scala can also return methods and functions

 The main method is not declared as static because there are no
static fields or methods.
o Instead they are declared as singleton objects.

 The class, unlike Java, is declared as an object.
o Scala is a pure-object oriented language because everything is an object.

o This enables the programmer to manipulate functions as a value.

object HelloWorld {
 def main(args: Array[String]) {
 println("Hello, world!")
 }
}

 Singleton object
o A class with a single instance

o This declares both a class and an instance at once without having to
instantiate it.

 Limitations
o A new instance of a singleton object can not be created.

• However, a class of the same name may be created that allows for the
creation of and the compiler will deduce that the class is being called.

• This will allow you to create a regular object of the same type, depending
on how the instance in the class is setup.

 Static methods or fields do not exist in Scala.

 Functions are treated as objects in Scala
o This is also known as First-Class functions.

 These functions have the literal syntax of an object.

 Because functions are objects, it opens up a world of
possibilities.

 Functions can be passed as arguments
o Stored as variables

o Be returned from other functions

 This ability is the cornerstone of functional programming
and one of the main demonstrations of Scala’s dual nature.

 There are classes in Scala, not just objects.

 They differ a bit from Java’s classes, although they are
declared similarly.

 In Scala, Classes can have parameters.

 As a reminder, return types do not have to be declared
explicitly.
o They will be inferred by the compiler.

o The compiler looks at the right-hand side of the method and
determines what the return type is.

o Unfortunately, it can not always do this.

o The general rule is to try to omit type declarations and see if the
compiler complains.

 Every class in Scala inherits from a super-class

 If a super-class is not defined, the class will have an
implicit super-class
o The default implicit super-class is scala.AnyRef.

 It is possible to override any inherited method.
o This is one of the few times when something must be explicitly

specified.

• The override modifier must be specified.

 Uses pattern matching
o Pattern matching in Scala allows the user to match any type of data

with a first-match implementation

 Constructor parameters are inherently associated with an
accessor/mutator method pair

 Has automatic conversion of the constructor parameters of
the case class into fields.
o Used mainly for the purpose of isolating the data into an easily

accessible manner.

 In addition to previous examples, Scala has many of the
qualities of an Object oriented language.

 Scala can create stand-alone objects

 It has both classes and traits, which in its object oriented
format are described by classes and traits.

 Typical OO abstraction is done with abstract and sub
classes.

 First and foremost is the functional language side of Scala
o This helps to eliminate mutable states

o It also helps to write concise solutions.

 Scala uses a concise syntax.
o It is less verbose than Java, which makes it easier to debug as well

as to review.

 Helps to create more reliable code through the powerful
type system

 Functions are first class values
o A function has all the functional properties of any of the default and

more “typical” types.
o You can treat a function in the same way that you would treat any of

the built-in types.

 Lazy evaluation
 Pattern Matching
 Currying Functions

o Allows for functions with several arguments to be called as a chain of
functions

o Each of these curried functions has only one argument.

 Type Inference
o Scala only has local type inference.
o This is less powerful than the type of inference that is used in Haskell

and ML.

 Similarly to Ruby, Scala can create internal Domain Specific Languages.
o This allows for the creation of meta-object protocols that allow developers

 Multi-threaded asynchronous coding is hard.
o Actors make it easier
o Code reuse with traits

• Contains all of the common code
• Has an abstract version of the code
• Can create a class that fills in the code

 Scala’s combination of the two programming paradigms allows for the
code to be much shorter
o LinkedIn reported an almost 50% reduction in the number of lines of code

 Scala is also incredibly fast.
o This is a benefit of Sun Microsystems time put into Java optimization
o Scala benefits from the Java optimization from its relation and use of the Java

framework.

 It has very few reserved words.
o This helps with the scalability

• One can easily grow types.
• This is partially due to the First Class functional types from the functional languages.

 Combination of Functional and Object oriented elements:
o Wasn’t this a benefit?

 Conceptually large system.
o There is an almost overwhelming amount of available tools.

o Most programmers only use a small portion of the tools until
something requires them.

 The flexibility can overwhelm even the best
o There are many ways to solve a problem.

o This only increases the possibilities for code inconsistency.

 Using libraries from other languages
o While this can be powerful, it can also make code readability and

debugging daunting.

 Scala has inherited several of the pitfalls and issues of JVM.

 Scala is not just a theoretical language used for giggles.

 Many large and well know companies are using Scala for
development in some important fields.

 o Replaced Java for mission critical business applications.

• “Source, supply transport, store, and convert physical commodities across
the wholesale energy markets.” (Scala in the enterprise, 2011)

o Distributed client server applications

o Simple and concise methods for improved performance

o Allows for companies to continue to use their existing infrastructure.

• Integrates with most middleware and backend systems.

o Web Based home security systems

o Mobile game logic

o Energy management and analysis to help use energy more efficiently

 LinkedIn  Norbert, used in the social graph, search engine and
used to help implement distributed client server applications.

 Sony Pictures Imageworks  "The Scala Migrations library is
written in Scala and makes use of the clean Scala language to
write easy to understand migrations, which are also written in
Scala. Scala Migrations provides a database abstraction layer
that allows migrations to target any supported database
vendor.“(Scala in the enterprise, 2011)

 Sygenca  Designs many products, including several for the UK
Government

 Twitter  Moved their main message queue from Ruby to Scala
for improved performance and half the code.

http://www.edftrading.com/default.aspx

 The official site http://www.scala-lang.org/
o This has the largest and most thorough documentation of Scala.

 Style guide  http://davetron5000.github.com/scala-
style/index.html

 Information from the Creator 
http://www.slideshare.net/Odersky/fosdem-2009-
1013261

 Learning Scala from a Java background 
http://www.ibm.com/developerworks/java/library/j-
scala01228/index.html#N100BC

http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://www.scala-lang.org/
http://davetron5000.github.com/scala-style/index.html
http://davetron5000.github.com/scala-style/index.html
http://davetron5000.github.com/scala-style/index.html
http://davetron5000.github.com/scala-style/index.html
http://www.slideshare.net/Odersky/fosdem-2009-1013261
http://www.slideshare.net/Odersky/fosdem-2009-1013261
http://www.slideshare.net/Odersky/fosdem-2009-1013261
http://www.slideshare.net/Odersky/fosdem-2009-1013261
http://www.slideshare.net/Odersky/fosdem-2009-1013261
http://www.ibm.com/developerworks/java/library/j-scala01228/index.html
http://www.ibm.com/developerworks/java/library/j-scala01228/index.html
http://www.ibm.com/developerworks/java/library/j-scala01228/index.html

 Scala. (2008, August 19). Retrieved 1 2011, November,
from Scala: http://www.scala-lang.org/

 Scala in the enterprise. (2011, January 12). Retrieved
November 1, 2011, from Scala: http://www.scala-
lang.org/node/1658#LinkedIn

 Gougen, J. A. (1984, November 5). Parameterized
Programming. IEE Transactions on Software Engineering,
SE-10.

 Odersky, M., & Zenger, M. (2005). Scalable Component
Abstractions. OOPSLA Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications.

