
Object-Relational Mapping (ORM)
Ehab Ababneh

Outline
•  Introduction
• Hibernate
▫  A first Example
▫  Hibernate’s Architecture
▫  Hibernate’s Main Classes
▫  Mapping entities’ relationships (i.e. entities to

objects)
▫  Mapping OO relationships (i.e. classes to entities)
�  Mapping associations

�  Mapping Containers
�  Mapping inheritance

Introduction

• Objects are the basic building blocks for software
systems.

• And, generally speaking, a software system need
to persist its state.

• Relational data model is the most prevalent
(Oracle, MySQL, SQLServer, etc.).

• Bridge the gap between different paradigms.

Introduction

• Not only that, but it also provides data query and
retrieval facilities and can significantly reduce
development time otherwise spent with manual
data handling in SQL and JDBC

• We will be looking at Hibernate as an example.

Hibernate

Hibernate

• Hibernate is free.
• Hibernate is an open source project.
• Hibernate currently is in release 3.6.8. But a

fifth CR of 4.0.0 is out as well.
•  Founder and current project leader is Gavin

King.

Configuring Hibernate, Storing and retrieving objects

A First Example

•  Persist an object
• Retrieve an object

The Setup
•  The database: employees database from Launchpad.
▫  The database: http://launchpadlibrarian.net/24493586/

employees_db-full-1.0.6.tar.bz2
▫  Installation Instructions: http://dev.mysql.com/doc/employee/

en/employee.html#employees-installation
•  Hibernate runtime, which can be downloaded from

SourceForge.
•  JPA from "lib\jpa" within the hibernate distribution.
•  Jar files in the "lib\required" folder in hibernate's

distribution.
•  Self4j
•  MysqlConnectorJ.

The Setup

•  Schema

A First Example

• What do we need in order to persist and retrieve
an object?

A First Example

• A way to tell Hibernate about the database
• Our persistent class
• A way to tell Hibernate how to map the

persistent class to the database table(s)
•  The main program to glue thing together

A First Example
•  Hibernate Configuration

 file
▫  File name is

"hibernate.cfg.xml" and the
file itself is in the class path.

▫  Lines 8-10 specify that we
are using a mysql JDBC
driver. So, it must be in the
class path.

▫  Lines 11-13 specify the
connection URL to the
database. The database name
is "employees" and mysql is
running on localhost on
default port.

▫  Lines 14-15 are database user
account information.

▫  Line 18 tells hibernate to
user mysql's flavor of SQL or
"dialect". Other dialects are
listed later on.

▫  Line 21 specifies a Class-to-
Table mapping file (shown
later).

1 <?xml version='1.0' encoding='utf-8'?>
 2 <!DOCTYPE hibernate-configuration PUBLIC
 3 "-//Hibernate/Hibernate Configuration DTD//EN"
 4 "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
 5
 6 <hibernate-configuration>
 7 <session-factory>
 8 <property name="hibernate.connection.driver_class">
 9 com.mysql.jdbc.Driver
10 </property>
11 <property name="hibernate.connection.url">
12 jdbc:mysql://localhost/employees
13 </property>
14 <property name="hibernate.connection.username">root</property>
15 <property name="hibernate.connection.password“></property>
16 <property name="hibernate.connection.pool_size">10</property>
17 <property name="show_sql">true</property>
18 <property name="dialect">org.hibernate.dialect.MySQLDialect</property>
19 <property name="hibernate.hbm2ddl.auto">update</property>
20 <!-- Mapping files -->
21 <mapping resource=“employee.hbm.xml"/>
22
23 </session-factory>
24 </hibernate-configuration>

A First Example
•  Persistence Class
▫  This is the java class that is to be

mapped to a database table.
▫  The persistent class follows the

JavaBean standard (no-arg
constructor in addition to a setter
and getter for each mapped
attribute).

 1 package hibernatetutorial.entities;
 2
 3 import java.util.Date;
 4
 5 public class Employee {
 6
 7 String firstName;
 8 String lastName;
 9 Date birthDate;
10 Date hireDate;
11 char gender;

 // setters and getters

 …..
60	 }

A First Example
•  Mapping File
▫  Line 5 links the class to be mapped and

the database table.
▫  Lines 6-8 specify the identifier property

of the persistent class objects which is
"employeeNumber" and map that
property to the database column
"emp_no" in the employees database
table. The lines also specify that it is the
table's primary key and the method by
which it is generated (in this case it is
"assigned") other methods for primary
key generation are listed later.

▫  Honor the camelCase style. Notice that
the in the mapping file a property
"firstName" is specified and class
Employee has the methods
setFirstName(String) and
getFirstName().

1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping
DTD 3.0//EN"
 3 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
 4 <hibernate-mapping>
 5 <class name="hibernatetutorial.entities.Employee"
table="employees">
 6 <id column="emp_no" name="employeeNumber">
 7 <generator class="assigned"/>
 8 </id>
 9 <property name="firstName">
10 <column name="first_name"/>
11 </property>
12 <property name="lastName">
13 <column name="last_name"/>
14 </property>
15 <property name="hireDate">
16 <column name="hire_date"/>
17 </property>
18 <property name="birthDate">
19 <column name="birth_date"/>
20 </property>
21 <property name="gender">
22 <column name="gender"/>
23 </property>
24 </class>
25 </hibernate-mapping>

•  Main Program
▫  Lines 23-24 instantiate a SessionFactory

object. This is where the hibernate.cfg.xml
is read. This basically tells Hibernate how
to find the database.

▫  Line 27 calls on the SessionFactory to get a
session object. The session object is the
interface between our application and
Hibernate. So, if we wanted to ask
Hibernate to do something for us we do it
through this session object.

▫  Line 29 starts a transaction.
▫  Lines 38-44 instantiate an object of the

persistent class and give values for its
attributes.

▫  Line 47 saves the object in the session
object. That means that the object is a live
in the session's persistent store.

▫  Line 48 commits the transaction and the
object is now saved to the database.

23 SessionFactory sessionFactory =
24 new Configuration().configure().buildSessionFactory();
25
26 // get a session
27 Session session = sessionFactory.openSession();
28
29 Transaction tx = session.beginTransaction();
30
31 //Create new instance of Employee and set values in it.
32 System.out.println("Inserting Record ...");
33
34 Calendar thirtyYears = Calendar.getInstance();
35 thirtyYears.add(Calendar.YEAR, -30);
36 thirtyYears.getTime();
37
38 Employee employee = new Employee();
39 employee.setEmployeeNumber(199999);
40 employee.setBirthDate(thirtyYears.getTime());
41 employee.setFirstName("Matthew");
42 employee.setLastName("Gheen");
43 employee.setHireDate(new Date());
44 employee.setGender('M');
45
46 // save the newly created object -> db table row.
47 session.save(employee);
48 tx.commit();
49 System.out.println("Done!");

A First Example

•  Hibernate Configuration can be specified in an XML file -just like the way
we did it, using a hibernate.properties text file or programmatically.

•  Hibernate can connect to a database using JDBC just like in our example, or
it can use other connection sources like JNDI.

•  If you can take a second look at the persistent class and you can see that no
extra code has been added to it to handle anything related to persistence. In
other words it is just a Plain Old Java Object (POJO) as Martin Fowler
would describe it.

•  The setter and getter need not be public.
•  You can tell Hibernate to bypass setters and getters of any mapped field in

the persistent class. And in that case Hibernate would change/get the value
persistent class's data member directly. For example you can change the
method of field access for the first name property like this:
 <property name="firstName“ access="field" ><column
name="first_name"/></property>

•  Hibernate may need to commit the object created in case the id is generated
by the database (i.e. identity). In this case, an explicit rollback is a must in
case the object is deemed to be no longer needed.

Few Notes

•  Main Program for querying
the database.
▫  Lines 27-31 are nothing new
▫  Lines 35-38 create a Criteria

object and add Restriction
objects to build the
“WHERE” clause in the SQL
query.
▫  Hibernate return a List

interface with the query
results.
▫  Lines 41-45 iterate through

the list just like any other
Java List.

A First Example

27 SessionFactory sessionFactory =
28 new Configuration().configure().buildSessionFactory();
29
30 // get a session
31 Session session = sessionFactory.openSession();
32
33 //session.beginTransaction();
34
35 List employees = session.createCriteria(Employee.class)
36 .add(Restrictions.eq("lastName", "Markovitch"))
37 .add(Restrictions.eq("firstName", "Margareta"))
38 .list();
39
40
41 for (Employee emp : (List<Employee>) employees)
42 {
43 System.out.println(emp.getLastName() + ", "
44 + emp.getFirstName() + " had the titles:");
45 }

Architecture Overview
•  Layered architecture
•  Each database connection in

Hibernate is created by
creating an instance of Session
interface. Session represents a
single connection with
database. Session objects are
created from SessionFactory
object.

•  SessionFactory (org.hibernate.SessionFactory)
▫  A thread-safe, immutable cache of compiled mappings for a single database. A

factory for org.hibernate.Session instances. A client of
org.hibernate.connection.ConnectionProvider. Optionally maintains a second
level cache of data that is reusable between transactions at a process or cluster
level.

•  Session (org.hibernate.Session)
▫  A single-threaded, short-lived object representing a conversation between the

application and the persistent store. Wraps a JDBC java.sql.Connection. Factory
for org.hibernate.Transaction. Maintains a first level cache of persistent the
application’s persistent objects and collections; this cache is used when navigating
the object graph or looking up objects by identifier.

•  Persistent objects and collections
▫  Short-lived, single threaded objects containing persistent state and business

function. These can be ordinary JavaBeans/POJOs. They are associated with
exactly one org.hibernate.Session. Once the org.hibernate.Session is closed, they
will be detached and free to use in any application layer (for example, directly as
data transfer objects to and from presentation).

Hibernate’s Main Classes

•  Transient and detached objects and collections
▫  Instances of persistent classes that are not currently associated

with a org.hibernate.Session. They may have been instantiated by
the application and not yet persisted, or they may have been
instantiated by a closed org.hibernate.Session.

•  Transaction (org.hibernate.Transaction)
▫  (Optional) A single-threaded, short-lived object used by the

application to specify atomic units of work. It abstracts the
application from the underlying JDBC, JTA or CORBA
transaction. A org.hibernate.Session might span several
org.hibernate.Transactions in some cases. However, transaction
demarcation, either using the underlying API or
org.hibernate.Transaction, is never optional.

Hibernate’s Main Classes

•  ConnectionProvider
(org.hibernate.connection.ConnectionProvider)
▫  (Optional) A factory for, and pool of, JDBC connections. It abstracts the

application from underlying javax.sql.DataSource or
java.sql.DriverManager. It is not exposed to application, but it can be
extended and/or implemented by the developer.

•  TransactionFactory (org.hibernate.TransactionFactory)
▫  (Optional) A factory for org.hibernate.Transaction instances. It is not

exposed to the application, but it can be extended and/or implemented
by the developer.

Hibernate’s Main Classes

One-to-many, many-to-many

•  In our example database,
an employee may have/
had several titles (history
data).

•  “Titles” has a composite
key. The foreign key
referencing “emplyees.id”
is part of that composite
key.

Mapping One-to-Many

• Checklist for implementing this relationship:
▫  The new “Title” persistent class
▫  Adding a container of some sort in the Employee

class to hold its related Title instances.
▫  Mapping file for the “Title” class.
▫  Modifying Employee’s mapping to tell Hibernate

about the new relationship.
▫  Modifications to the main program.

Mapping One-to-Many

•  The new “Title” persistent
class
▫  Another simple POJO i.e.

setters, getters, and no-arg
constructor.
▫  Lines 27-59 The composite id

is represented with an inner
serializable class.

Mapping One-to-Many

1 package hibernatetutorial.entities;
2
3 import java.io.Serializable;
4 import java.util.Date;
5
6 public class Title {
7
8 Date toDate;
9 Id id;
10

 // ……
 // setters and getters for toDate and id.

26
27 public static class Id implements Serializable {
28
29 long employeeId;
30 String name;
31 Date fromDate;

 // …..
 // setters and getters for members in Id class.

59 }
60 }

•  Adding a container in
Employee class to hold its
titles.
▫  The lines basically add a Set

container for holding the
instances of Title Class that
belong to this instance of
Employee. Hibernate will
handle populating this
container with the appropriate
Title instances.

Mapping One-to-Many

 private Set titles;

 public Set getTitles() {
 return titles;
 }

 public void setTitles(Set titles) {
 this.titles = titles;
 }

•  Adding a container in Employee
class to hold its titles.
▫  Lines 26-29 is the only change from the

original employee mapping. These line tell
Hibernate to put the instances of the Title class
in a Set container within the Employee class.

▫  Line 26 tells Hibernate that the continuer
name is “titles” and is of type Set. It also tells
Hibernate the order by which to fetch rows
from the titles table (order-by=”column asc|
desc”). And that it should populate the
instance once the Employee instance is
created. (lazy=”false”). The attributes order-by
and lazy are optimal.

▫  Line 27 tells Hibernate how to match the
appropriate rows from titles table with the
appropriate row from the employees table.

▫  Line 28 tells Hibernate what class to
instantiate an object from when finding a row
in titles table related to the instance of this
instance of the Employee class.

Mapping One-to-Many

 ……

22 <property name="gender">
23 <column name="gender"/>
24 </property>
25
26 <set name="titles" order-by="from_date asc" lazy="false">
27 <key column="emp_no"/>
28 <one-to-many class="hibernatetutorial.entities.Title"/>
29 </set>
30
31 </class>
32
33 </hibernate-mapping>

•  Many-to-many relationships are usually represented
with a separate table with foreign keys to both
participating entities.

•  The relationship may have additional attributes.

Mapping Many-to-Many

•  Mapping many-to-many relationships when the relationship has
not additional attributes is relatively easy.

•  In this example Hibernate knows that from the <many-to-many>
how to match the right departments with the right managers.

•  As before, the Department persistent class has nothing unusual. It
contains id and name attribute and their setters/getters.

•  A Set container “departmentsManaged” is been added to the
Employee persistent class to hold the appropriate Department
instances.

Mapping Many-to-Many

 <set name="departmentsManaged" table="dept_manager">
 <key column="emp_no"/>
 <many-to-many column="dept_no" class="hibernatetutorial.entities.Department"/>
 </set>

•  Mapping many-to-many relationships when the
relationship has additional attributes requires splitting
the relationship into two many-to-one relationships
and creating another persistent class that represents
the relationship.

Mapping Many-to-Many

 1 package hibernatetutorial.entities;
 2
 3 import java.util.Date;
 4
 5 public class DepartmentManager {
 6 Date fromDate;
 7 Date toDate;
 8 Department department;
 9
10 // + setters and getters
11
12 }

31 <set name="departmentsManaged" table="dept_manager">
32 <key column="emp_no"/>
33 <composite-element
34 class="hibernatetutorial.entities.DepartmentManager">
35 <property name="fromDate" type="date"
36 column="from_date" not-null="true"/>
37 <property name="toDate" type="date"
38 column="to_date" not-null="true"/>
39 <many-to-one name="department"
40 class="hibernatetutorial.entities.Department"
41 column="dept_no" not-null="true"/>
42 </composite-element>
43 </set>

Associations, Inheritance

•  Associations can be represented using the previously
mentioned techniques (one-to-one, one-to-many,
many-to-one, and many-to-many).

•  Mapping these relationships is relatively easy, and can
be easier once you get to know how to map different
types of containers.

•  We have seen an example for mapping a Set of “Titles”.
•  We will take a look at mapping another type of

container.

Mapping Associations

•  Mapping A “Map” Collection:
▫  Tag <map> tells Hibernate to map the collection to an implementation

of the Map interface.
▫  The tag <key> tells Hibernate how to pick the columns from the

database table.
▫  The tags <map-key> and <one-to-many> tell Hibernate what fields are

to be used as a key-value pair for the map.

Mapping Associations

<map name="titles" >
 <key column="emp_no"/>
 <map-key column="title" type="string"/>
 <one-to-many class="hibernatetutorial.entities.Title"/>
</map>

•  Hibernate supports a wide range of Java collections.
The most widely used are Maps, Lists, and Sets.

•  Here is a link with many examples and details about
mapping collections:

http://docs.jboss.org/hibernate/core/3.3/reference/en/
html/collections.html

Mapping Associations

•  Three main strategies for mapping inheritance:
▫  One table per class
▫  One table per class hierarchy
▫  One table per concrete class.

Mapping Inheritance

Mapping One-to-Many
•  One table per class strategy:

•  One table per class strategy:
▫  In this strategy a table is created

for each class in the hierarchy. The
primary key from the super class is
used as a primary key in the sub
class as well. The primary in the
sub class is also marked as a
foreign key that references the
primary key in the super class.
▫  Notice that there person_id in the

customer is used as a primary key
in the Customer table as well as a
foreign key that references id in
the Person table. Likewise in the
Employee table.

Mapping Inheritance

•  One table per class strategy:
▫  The three POJOs

Mapping Inheritance
Person persistent class:

1 public class Person {
2 long id;
3 String firstName;
4 String lastName;
5
6 // + setters and getters
7 }

The Customer persistent class:

1 public class Customer extends Person {
2 float balance;
3
4 // + setters and getters
5 }

The Employee persistent class:

1 public class Employee extends Person {
2
3 float salary;
4
5 // + setters and getters
6 }

•  One table per class strategy:
▫  The mapping file:

Mapping Inheritance
1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate
Mapping DTD 3.0//EN"
 3 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
 4 <hibernate-mapping>
 5
 6 <class name="Person" table="Person">
 7 <id name="id" type="long">
 8 <generator class="assigned"/>
 9 </id>
10 <property name="firstName" column="first_name"/>
11 <property name="lastName" column="last_name"/>
12
13 <joined-subclass name="Employee" table="employee">
14 <key column="person_id"/>
15 <property name="salary" column="salary"/>
16 </joined-subclass>
17 <joined-subclass name="Customer" table="Customer">
18 <key column="person_id"/>
19 <property name="balance" column="balance"/>
20 </joined-subclass>
21 </class>
22
23 </hibernate-mapping>

Mapping One-to-Many
•  One table per class hierarchy strategy:

•  One table per class strategy:
▫  In this strategy all classes in the

inheritance are flattened into
one table. The created table
includes all properties from all
classes in the hierarchy in
addition to a column that tells
which concrete class the current
row is an instance of.
▫  The column “type” in this table

is the discriminator between
Employee instances and
Customer instances.

Mapping Inheritance

•  One table per concrete class
strategy:
▫  The mapping file:

Mapping Inheritance
1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate
Mapping DTD 3.0//EN"
 3 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
 4 <hibernate-mapping>
 5
 6 <class name="Person" table="People">
 7 <id name="id" type="long" column="id">
 8 <generator class="assigned"/>
 9 </id>
10 <discriminator column="type" type="string"/>
11 <property name="firstName" column="first_name"/>
12 <property name="lastName" column="last_name"/>
13
14 <subclass name="Customer" discriminator-value="CUSTOMER">
15 <property name="balance" column="balance"/>
16 </subclass>
17 <subclass name="Employee" discriminator-value="EMPLOYEE">
18 <property name="salary" column="salary"/>
19 </subclass>
20 </class>
21 </hibernate-mapping>

Mapping One-to-Many
•  One table per concrete class strategy:

•  One table per class strategy:
▫  In this strategy a table is

created per concrete class and
each table contains the
attributes of its matching
concrete class in addition to
the attributes of the base
class.
▫  Notice that the employees

table contains the attributes
from the Employees class in
addition to the attributes
from the Person class.

Mapping Inheritance

•  One table per class hierarchy
strategy:
▫  The mapping file:

Mapping Inheritance
1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate
Mapping DTD 3.0//EN"
 3 "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
 4 <hibernate-mapping>
 5
 6 <class name="Person">
 7 <id name="id" type="long" column="id">
 8 <generator class="assigned"/>
 9 </id>
10 <property name="firstName" column="first_name"/>
11 <property name="lastName" column="last_name"/>
12
13 <union-subclass name="Customer" table="Customers">
14 <property name="balance" column="balance"/>
15 </union-subclass>
16 <union-subclass name="Employee" table="Employees">
17 <property name="salary" column="salary"/>
18 </union-subclass>
19 </class>
20 </hibernate-mapping>

