
Metaprogramming
Programs as Data

Metaprogramming
Programs that use other programs as data

Examples:

● Compilers
○ Templating and Generics

● Refactoring Tools

Reflective Programming
Programs that use themselves as data

Examples:

● Inspect variables, classes, and methods
● Create new variables, classes, and

methods

Ruby
is a "scripting
language"

Also:

● Interpreted
● Reflective
● Object-oriented

Ruby
Everything is an
object, including
classes and methods

Everything inherits
from the class Object,
including classes and
methods

Ruby
Symbols are like global
enums

Used to identify methods and
variables

Examples:

● :foo
● :'1'
● :'@foo'

Ruby

Class Variable: @@var

Instance Variable: @var

An instance's class variables are a
class's instance variables

Ruby
array.each do |obj|

...
end

(1..10).inject(0) {|m,n| m + n}

def foo(arg, &block)

...
end

def greet

@names.each {|n| yield n}

end

Ruby
No multiple inheritance;
mixins instead

Inherited class variables
aren't copied into the
new class

Ruby
class A

@@words = []

def <<(word)

@@words << word

end

def print

puts @@words.join(' ')

end

end

class B < A; end

class C < A; end

(v0 = B.new) << 'hello'

(v1 = C.new) << 'world'

Object Methods

class
send
extend
method
methods
responds_to?

instance_exec
instance_variables
method_missing

Object Methods
instance_variable_defined?(symbol)
instance_variable_get(symbol)
instance_variable_set(symbol, object)

symbol looks like :'@name'

"Sets the instance variable names by symbol
to object, thereby frustrating the efforts
of the class’s author to attempt to provide
proper encapsulation." - Ruby Documentation

Module Methods

module_eval
class_eval
class_variable_defined?
included

instance_method
instance_methods
method_defined?

Classes
inherited callback

How do you access
class variables?

Klass.instance_variable_get
Klass.instance_variable_set

Anonymous Classes

klass = Class.new do

method definitions
end

Use Cases: method_missing
debugging

dynamic function
definition

error reporting

proxy objects

method families

def method_missing(meth, *args, &block)
 if meth.to_s =~ /^find_by_(.+)$/
 run_find_by_method($1, *args, &block)
 else
 super

 end
end

Use Cases: define_method

reduce code duplication

form closures

code instrumentation

log = Logger.new

meth = obj.method(name)

obj.define_method(name) do |*args|

log.info("Called #{name}")

meth.call(*args)

end

Case Study: RLTK::AST

Case Study: RLTK::AST

Case Study: RLTK::AST

Case Study: RLTK::Parser
Motivation:
● Subclass RLTK::

Parser to create new
parsers

● Define any number of
parsers

● Instantiate any number
of parsers

Problem: Superclass class
variables are shared
between subclasses

Case Study: RLTK::Parser

Questions?

