
Xin Pan

CSCI5448 2011 Fall

Outline
 Introduction of Android System

 Four primary application components

 AndroidManifest.xml

 Introduction of Android Sensor Framework
 Package

 Interface

 Classes

 Examples of Using Accelerometer
 Using background Service

 Using foreground Activity

Introduction
 Android Inc. is acquired by Google in 2005.

 Open Handset Alliance was established and Android
was announced in 2007.

 The first Android handset and source code was
released in 2008.

 Open and comprehensive platform for mobile devices.

 Platform is powered by Linux.

Android Version History
Version Release

Date
Linux
Kernel

Selected Key Updates

1.x Sep 2008 –
Sep 2009

2.6.23/
27/29

Camera, WiFi, and Bluetooth supported.

2.x Oct 2009 –
Dec 2010

2.6.29/
32/35

Bluetooth 2.1, API changes, system speed, memory,
and performance optimizations, media support,
video chat.

3.x
(Honeyc
omb)

Feb 2011 –
Jul 2011

2.6.36 The first SDK release for tablet computers. Motorola
Xoom tablet is the first device featuring this version.

4.x (Ice
Cream
Sandwic
h)

Oct 2011 3.0.1 Face Unlock, Wi-Fi Direct. Galaxy Nexus is the first
device featuring this version. added facial
recognition, social networking, information sharing,
and other features.

Android Architecture

http://developer.android.com/guide/basics/what-is-android.html

 This diagram
shows the
major
components
of Android
operating
system.

http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html
http://developer.android.com/guide/basics/what-is-android.html

Android Architecture
 Android software layers consists of:

 Linux
 Provides process and memory management, security, networking,

and device drivers.

 Libraries

 Runtime
 Dalvik VM

 Application Framework
 provides services to applications, such as notification and activity

managers. These are all implemented as Java classes.

 Applications
 Component-oriented and integration-oriented

Android Application
 Written in Java programming language.

 Packaged into a .apk file.

 Runs isolated in its own VM.

 Composes of one or more application components.

 Starts the components when needed.

 Ends the components when no longer needed.

Application Components
 Android process has four primary components:

 Activities
 a component that provides a user interface, e.g. send an email.

 Services
 a component that can perform long-running background

operations without user interface.

 Content providers
 a component that manages application data

 Broadcast receivers
 a component that responds to system-wide broadcast

announcements.

Activities
 Android is sensitive to the

lifecycle of an application
and its components.

 Android provides callbacks to
process state changes.

 Lifecycle callbacks for an
activity
 onCreate()

 OnStart()
 OnRestart()

 OnResume()
 OnPause()

 OnStop()

 onDestory()

http://developer.android.com/guide/topics/fundamentals/activities.html

http://developer.android.com/guide/topics/fundamentals/activities.html

Services
 A service runs in the background.
 A service needs to be declared in the mainifest

 Services can be started with Context.startService() and
Context.bindService().

 Service will only stop when Context.stopService() or stopSelf() is
called.

 Context.bindService() can be used to obtain a persistent
connection to a service.

<manifest ... >
 ...
 <application ... >
 <service android:name=".ExampleService" />
 ...
 </application>
</manifest>

Service Lifecycle

http://developer.android.com/guide/topics/fundamentals/services.html

 Service lifecycle callback
methods are used to
monitor changes in a
service’s state.

 onCreate()

 onStartCommand()

 Or onBind() and
onUnbind()

 onDestory()

http://developer.android.com/guide/topics/fundamentals/services.html

Content Providers
 Content providers store and retrieve data.

 android.provider package

 The information needed to query a content provider,

 URI to identify the provider

 A Uniform Resource Identifier that identifies an abstract or
physical resource

 The name of the data fields

 The data types of the fields

 Audio, video, images…

Broadcast Receivers
 BroadcastReceiver object is only valid during the call to

onReceive().

 Once onReceive() returns, BroadcastReceiver is no longer
active, and system will consider its process to be empty and
kill the process.

 Therefore, for long-running operations, Service and
BroadcastReceiver should be used together to keep the
process active.

The Manifest File
 Every application must have an AndroidManifest.xml

file (with precisely that name) in its root directory.

 AndroidManifest.xml defines all the components,
contents and behavior of the application, e.g. activities
and services.

 xml class will parse the contents

<application>
<activity/>
<service/>
<receiver/>
<provider/>

</application>

Sensor Types
 Android supports multiple types of sensors

 Light sensor
 Proximity sensor
 Temperature sensor
 Pressure sensor
 Gyroscope sensor
 Accelerometer
 Magnetic field sensor
 Orientation sensor
 Gravity sensor
 Linear acceleration sensor
 Rotation vector sensor
 Near Field Communication (NFC) sensor
 GPS (GPS is similar to a sensor, but not a sensor)

Android Sensor Framework
 Layers from bottom to top

 Sensor driver

 Sensor Hardware Module

 Sensor JNI

 Java Sensor Class

 Java Application

http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide

http://processors.wiki.ti.com/index.php/File:AndroidSensor.jpg
http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide
http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide
http://processors.wiki.ti.com/index.php/Android_Sensor_PortingGuide

Sensor Package and Classes
 Package: android.hardware

 Interface

 SensorEventListener

 Classes:

 Sensor

 SensorEvent

 SensorManager

Interface: SensorEventListener (I)
 Used for receiving notifications from the

SensorManager when sensor values have changed.

 Public methods:

 abstract void onSensorChanged(SensorEvent event)

 abstract void onAccuracyChanged(Sensor sensor, int
accuracy)

Interface: SensorEventListener (II)
 abstract void onSensorChanged(SensorEvent event)

 This function is called by system when sensor values
have changed.

 This is an abstract function, need to be implemented by
user.

 The parameter of this function is an instance of Class
SensorEvent (will introduce this class later), which holds
information such as sensor type and sensor values.

Interface: SensorEventListener (III)
 abstract void onAccuracyChanged(Sensor sensor, int

accuracy)

 This function is called when the accuracy of a sensor has
changed.

 This is an abstract function, need to be implemented by
user.

 The parameters of this function are an instance of Class
Sensor (will introduce this class later) and the new
accuracy level (High(=3), Medium(=2), and Low(=1)).

Class: Sensor (I)
 Represents a sensor

 Use getSensorList(int) to get the list of available
Sensors in Class SensorManager.

Class: Sensor (II)
 Class Sensor contains several constants to represent

Android sensor type

Constant Sensor

TYPE_ACCELEROMETER an accelerometer sensor type

TYPE_ALL all sensor types

TYPE_AMBIENT_TEMPERATURE an ambient temperature sensor type

TYPE_GRAVITY a gravity sensor type

TYPE_GYROSCOPE a gyroscope sensor type

TYPE_LIGHT an light sensor type

TYPE_LINEAR_ACCELERATION a linear acceleration sensor type

TYPE_MAGNETIC_FIELD a magnetic field sensor type

TYPE_PRESSURE a pressure sensor type

TYPE_PROXIMITY an proximity sensor type

TYPE_RELATIVE_HUMIDITY a relative humidity sensor type

TYPE_ROTATION_VECTOR a rotation vector sensor type

Class: Sensor (III)
 This class also includes a set of functions to get the

properties of a sensor, such as

 maximum range of the sensor in the sensor's unit.

 name string of the sensor.

 the power in mA used by this sensor while in use

 resolution of the sensor in the sensor's unit.

 generic type of this sensor.

 vendor string of this sensor.

 version of the sensor's module.

Class: SensorEvent (I)
 Represents a sensor event and holds information.

 Sensor event information includes:

 The accuracy of the sensor data

 The sensor that generated this event.

 The time in nanosecond at which the event happened

 Sensor data array. The length and contents of the values
array depends on which sensor type is being monitored.

Class: SensorEvent (II)
 Sensor data Examples

 Sensor type is Sensor.TYPE_ACCELEROMETER
 Accelerometer has three directions: vertically, laterally, or

longitudinally (X, Y, Z)
 All values are in SI units (m/s^2)
 values[0]: Acceleration minus Gx on the x-axis
 values[1]: Acceleration minus Gy on the y-axis
 values[2]: Acceleration minus Gz on the z-axis

 Sensor type is Sensor.TYPE_GYROSCOPE
 All values are in radians/second and measure the rate of rotation

around the device's local X, Y and Z axis.
 values[0]: Angular speed around the x-axis
 values[1]: Angular speed around the y-axis
 values[2]: Angular speed around the z-axis

Class: SensorManager (I)
 SensorManager provides sensor management services

to other applications on the device.

 provides a sensor selector package

 provides a standard way to all supported sensors

 Provides an interface to list and invoke the sensors

 Get an instance of this class by calling
Context.getSystemService() with the argument
SENSOR_SERVICE.

Class: SensorManager (II)
 An important Function

 registerListener (SensorEventListener listener, Sensor
sensor, int rate)
 Registers a SensorEventListener for the given sensor.

 You can make a single SensorManager, but for each sensor you
want to track, you need to make a unique SensorEventListener,
and Sensor.

 To avoid the unnecessary usage of battery, you should register
the listener in the onResume method and unregister in the
onPause method when overriding Activity methods

 Listener- A SensorEventListener object.

 Sensor - The Sensor to register to.

 Rate - The rate sensor events are delivered at.

Class: SensorManager (III)
 Delivering rate for sensor events must be one of :

Constants

SENSOR_DELAY_FASTEST get sensor data as fast as possible

SENSOR_DELAY_GAME rate suitable for games

SENSOR_DELAY_NORMAL rate (default) suitable for screen
orientation changes

SENSOR_DELAY_UI rate suitable for the user interface

Read Accelerometer
 It can be read in background service or foreground

activity.

 We will look at both examples:

 Service – write accelerometer data into log file

 Activity – display accelerometer data on screen

Write Accelerometer into Log
 Steps:

 Create an accelerometer Service and implement a
SensorEventListener

 Implement onAccuracyChanged and onSensorChanged
method

 Create variables for SensorManager and Sensor

 Get Object of SensorManager using system service

 Get Object of Acc Sensor from SensorManager

 Register a SensorEventListener for the accelerometer
sensor

Step1
 Create an accelerometer Service and implement a
SensorEventListener interface to process sensor data and
sensor accuracy change

Class AccServcie extend Service implements SensorEventListener {

 public void onSensorChanged(SensorEvent event) {
 // deal with sensor data

mNewValue = (int) event.values[0]*10;
Log.d(TAG, Integer.toString(mNewValue));

 }

 public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // deal with sensor accuracy change
 }
}

Step2
 Create and get instants of SensorManager and Sensor

Class AccService extends Service implements SensorEventListener {

@Override
public void onCreate() {

 SensorManager sensorManager =
 (SensorManager) getSystemService(SENSOR_SERVICE);

 Sensor accSensor = sensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);

 }
}

Step3
 Register a SensorEventListener for the accelerometer sensor.

Class AccService extends Service implements SensorEventListener {

@Override
public void onCreate() {
 SensorManager sensorManager =
 (SensorManager) getSystemService(SENSOR_SERVICE);
 Sensor accSensor = sensorManager.getDefaultSensor(
 Sensor.TYPE_ACCELEROMETER);

sensorManager.registerListener(
this,
accSensor,
SensorManager.SENSOR_DELAY_NORMAL);

 }
}

Read Accelerometer in Foreground
 Steps:

 Add a main.xml in /res/layout folder

 main.xml describe the layout of the screen display

 Similar to that of Service,

 Create an accelerometer Activity and implement a
SensorEventListener interface to process sensor data and
sensor accuracy change

 Create and get instants of SensorManager and Sensor, and
register a SensorEventListener

 Implement activity life cycle management for sensor
reading

Step1
 main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=http://schemas.android.com/apk/res/android
 android:orientation="vertical“
 android:layout_width="fill_parent“
 android:layout_height="fill_parent">
 <TextView android:id="@+id/textView“
 android:layout_width="match_parent“
 android:layout_height="match_parent“
 android:text="Shake to get a toast and to switch color"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android

Step2
 Create an accelerometer Activity and implement a

SensorEventListener interface to process sensor data and
sensor accuracy change

 Class AccActivity extends Activity implements SensorEventListener {

public void onSensorChanged(SensorEvent event) {
// deal with sensor data
TextView tvX= (TextView)findViewById(R.id.x_axis);
mNewValue = (int) event.values[0]*10;
…
tvX.setText(Float.toString(mNewValue));
…

}

public void onAccuracyChanged(Sensor sensor, int accuracy) {
 // deal with sensor accuracy change
}

}

Step3
 Create and get instants of SensorManager and Sensor, and

register a SensorEventListener for the accelerometer sensor

 Class AccActivity extends Activity implements SensorEventListener {
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

SensorManager sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

Sensor accSensor =
sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);

// Register for events.
sensorManager.registerListener(
this, accSensor, SensorManager.SENSOR_DELAY_NORMAL);

}
}

Step4
 For activity life cycle management, onResume and onPause

need to be overridden.
 Register a listener when receiving data from accelerometer

 Turn off the listener when not listening

 Class AccActivity extends Activity implements SensorEventListener {
protected void onResume() {

super.onResume();

mSensorManager.registerListener(this, mAccelerometer,
SensorManager.SENSOR_DELAY_NORMAL);

}

protected void onPause() {

super.onPause();

mSensorManager.unregisterListener(this);

}
}

unregister the listener
to save energy

Reference
 http://developer.android.com

 Komatineni, S., MacLean, D., and Hashimi, S. (2011).
Pro Android 3. Apress, 2011. Retrieved from
http://books.google.com/books

http://developer.android.com/
http://developer.android.com/
http://books.google.com/books

