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Goals of the Lecture

• Introduce the topic of dependency injection

• See examples using the Spring Framework

• Note: I’m using Spring 2.5.6 for this lecture

• The latest production release is 3.0.6

• The latest development release is 3.1.0

• I’m only going to scratch the surface of Spring’s capabilities

• It is an extremely powerful framework that provides TONS of 
functionality (more than just dependency injection)

• Note: you need to download the “with-dependencies” .zip file in order to 
acquire all of the .jar files you need to run the examples
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Dependency Injection

• Dependency Injection is

• a technique for assembling applications

• from a set of concrete classes

• that implement generic interfaces

• without the concrete classes knowing about each other

• This allows you to create loosely coupled systems as the code you write only 
ever references the generic interfaces that hide the concrete classes

• Dependency Injection is discussed in a famous blog post by Martin Fowler

• <http://martinfowler.com/articles/injection.html>
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Fowler’s Example
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MovieLister MovieFinder

TabDelimitedMovieFinder

A MovieLister class is able to list movies with certain characteristics after 
being provided a database of movies by an instance of MovieFinder

MovieFinder is an interface; TabDelimitedMovieFinder is a concrete class that 
can read in a movie database that is stored in a tab-delimited text file



The Goal: Loosely-Coupled Systems
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• Our goal (even with the simple system on the previous slide) is to avoid 
having our code depend on concrete classes

• In other words, we do NOT want to see something like this

• public class MovieLister {

• private MovieFinder finder;

• public MovieLister() {

• this.finder = new TabDelimitedMovieFinder(“movies.txt”);

• }

• …

• }
Dependency on Concrete Class

Dependency on hard-coded string



Discussion

• The code on the previous slide has two concrete dependencies

• a reference to a concrete class that implements MovieFinder

• a reference to a hard-coded string

• Both references are brittle

• The name of the movie database cannot change without causing 
MovieLister to be changed and recompiled

• The format of the database cannot change without causing MovieLister to 
be changed to reference the name of the new concrete MovieFinder 
implementation
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Our Target (I)

• For loose-coupling to be achieved, we need code that looks like this

• public class MovieLister {

• private MovieFinder finder;

• public MovieLister(MoveFinder finder) {

• this.finder = finder;

• }

• …

• }

• and, furthermore, nowhere in our source code should the strings 
“TabDelimitedMovieFinder” or “movies.txt” appear… nowhere!
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Our Target (II)

• As much as possible, get rid of code with the form
• Foo f = new ConcreteFoo();

• Indeed, for the MoveLister system, we would even like to see code like this
• public class Main {

• private MovieLister lister;
• public void setMovieLister(MovieLister lister) { this.lister = lister;}
• public List<Movie> findWithDirector(String director) {

• return lister.findMoviesWithDirector(director);
• }
• public static void main(String[] args) {

• new Main().findWithDirector(args[0]); // add code to print list of movies
• }

• } 8

We want this to work even with no explicit call to 
setMovieLister();



Two types of dependency injection

• In the previous two slides, we’ve seen (implied) examples of two types of 
dependency injection

• Constructor Injection

• public MovieLister(MoveFinder finder) {

• this.finder = finder;

• }

• Setter Injection

• public void setMovieLister(MovieLister lister) { this.lister = lister;}
• In the former, the MovieLister class indicates its dependency via its 

constructor (“I need a MovieFinder”); In the second, the Main class indicated 
its dependency via a setter (“I need a MovieLister”)
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So, what is dependency injection?

• The idea here is that classes in an application indicate their dependencies in 
very abstract ways

• MovieLister NEEDS-A MovieFinder

• Main NEEDS-A MovieLister

• and then a third party injects (or inserts) a class that will meet that 
dependency at run-time

• The “third party” is known as a “Inversion of Control container” or a 
“dependency injection framework”

• There are many such frameworks; one example is Spring which has been 
around in some form since October 2002
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The basic idea

• Take

• a set of components (concrete classes + interfaces)

• Add

• a set of configuration metadata

• Provide that to

• a dependency injection framework

• And finish with

• a small set of bootstrap code that gets access to an IoC container, 
retrieves the first object from that container by supplying the name of a 
generic interface, and invokes a method to kick things off
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Example

• For instance, Fowler’s example uses the following Spring-specific code to create 
an instance of MovieLister

• public void testWithSpring() throws Exception {

• ApplicationContext ctx = new FileSystemXmlApplicationContext("spring.xml");

• MovieLister lister = (MovieLister) ctx.getBean("MovieLister");

• Movie[] movies = lister.moviesDirectedBy("Terry Gilliam");

• }

• “spring.xml” is a standard-to-Spring XML file containing metadata about our 
application; it contains information that specifies that MoveLister needs a 
TabDelimitedMovieFinder and that the database is in a file called “movies.txt”

• Spring then ensures that TabDelimitedMovieFinder is created using 
“movies.txt” and inserted into MovieLister when ctx.getBean() is invoked 12



getBean()?

• In Spring, POJOs (plain old java objects) are referred to as “beans”

• This is a reference to J2EE’s notion of a JavaBean

• which is a Java class that follows certain conventions

• a property “foo” of type String is accessible via

• public String getFoo();

• and

• public void setFoo(String foo);

• Once you have specified what objects your application has in a Spring 
configuration file, you pull instances of those objects out of the Spring 
container via the getBean method
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Spring’s Hello World example

• I shall now possibly horrify you with a “Hello World” example written using 
Spring

• I say “horrify” because it will seem horribly complex for a Hello World 
program

• The complexity is reduced however when you realize that Spring is 
architected for really large systems

• and the “complexity tax” imposed by the framework pays off when you are 
dealing with large numbers of objects that need to be composed together

• the “complexity tax” pays dividends when you are able to add a new 
type of object to a Spring system by adding a new .class file to your 
classpath and updating one configuration file
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Spring’s Hello World (I)

• Note: example taken from the Apress book “Pro Spring 2.5”

• First, define a MessageSource class
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public class MessageSource {1
2

  private String message;3
4

  public MessageSource(String message) {5
    this.message = message;6
  }7

8
  public String getMessage() {9
    return message;10
  }11

12
}13
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Spring’s Hello World (II)

• Second, define a MessageDestination interface and a concrete implementation
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public interface MessageDestination {1
2

  public void write(String message);3
4

}5
6

public class StdoutMessageDestination implements MessageDestination {1
2

  public void write(String message) {3
    System.out.println(message);4
  }5

6
}7
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Spring’s Hello World (III)

• Third, define a MessageService interface
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public interface MessageService {1
2

  public void execute();3
4

}5
6



Spring’s Hello World (IV)

• Fourth, define a concrete implementation of MessageService
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public class DefaultMessageService implements MessageService {1
2

  private MessageSource source;3
  private MessageDestination destination;4

5
  public void setSource(MessageSource source) {6
    this.source = source;7
  }8

9
  public void setDestination(MessageDestination destination) {10
    this.destination = destination;11
  }12

13
  public void execute() {14
    destination.write(source.getMessage());15
  }16

17
}18
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Spring’s Hello World (IV)

• Fifth, create a main program that gets a Spring container, retrieves a 
MessageService bean, and invokes the service
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import org.springframework.beans.factory.support.BeanDefinitionReader;1
import org.springframework.beans.factory.support.DefaultListableBeanFactory;2
import org.springframework.beans.factory.support.PropertiesBeanDefinitionReader;3
import org.springframework.core.io.FileSystemResource;4

5
import java.io.File;6

7
public class DISpringHelloWorld {8

9
  public static void main(String[] args) {10
    DefaultListableBeanFactory bf = new DefaultListableBeanFactory();11
    BeanDefinitionReader reader = new PropertiesBeanDefinitionReader(bf);12
    reader.loadBeanDefinitions(13
      new FileSystemResource(14
        new File("hello.properties")));15

16
    MessageService service = (MessageService) bf.getBean("service");17
    service.execute();18
  }19

20
}21
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Spring Init Code

Where the magic happens



Spring’s Hello World (V)

• I say “magic” on the previous slide, because with that call to getBean(), the 
following things happen automatically

• an instance of MessageSource is created and configured with a message

• an instance of StdoutMessageDestination is created

• an instance of MessageService is created

• the previous two instances (message source, message destination) are 
plugged into MessageService

• In short, you got back an instance of MessageService without having to 
create any objects; and, the object you got back was ready for use

• you just had to invoke “execute()” on it
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Spring’s Hello World (VI)

• How does the magic happen?

• With the hello.properties file

• It defines three beans: source, destination, and service

• $0 refers to a constructor argument; (class) sets the concrete class of the 
bean; (ref) references a bean defined elsewhere

• With this information, the “service” bean can be created and configured 21

source.(class)=MessageSource1
source.$0=Hello Spring2
destination.(class)=StdoutMessageDestination3
service.(class)=DefaultMessageService4
service.source(ref)=source5
service.destination(ref)=destination6

7



XML Configuration Files

• The use of property files are now deprecated; instead, configuration metadata 
is stored in XML files; Here’s an XML file equivalent to hello.properties:
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<?xml version="1.0" encoding="UTF-8"?>1
<beans xmlns="http://www.springframework.org/schema/beans"2
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3
       xmlns:lang="http://www.springframework.org/schema/lang"4
       xsi:schemaLocation="5
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd6
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">7

8
  <bean id="source" class="MessageSource">9
    <constructor-arg index="0" value="Hello XML Spring" />10
  </bean>11

12
  <bean id="destination" class="StdoutMessageDestination" />13

14
  <bean id="service" class="DefaultMessageService">15
    <property name="source" ref="source" />16
    <property name="destination" ref="destination" />17
  </bean>18
  19
</beans>20

21



Spring’s Hello World (VII)

• To use hello.xml, the main program is simplified to:
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import org.springframework.beans.factory.xml.XmlBeanFactory;1
import org.springframework.core.io.FileSystemResource;2

3
import java.io.File;4

5
public class DIXMLSpringHelloWorld {6

7
  public static void main(String[] args) {8
    XmlBeanFactory bf =9
      new XmlBeanFactory(10
        new FileSystemResource(11
          new File("hello.xml")));12

13
    MessageService service = (MessageService) bf.getBean("service");14
    service.execute();15
  }16

17
}18
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The Infamous Zoo Example

• Way back in Lecture 4, I mentioned that it was possible to create a version of 
the Zoo program that would only reference “Animal” and not any of its 
subclasses (Dog, Cat, Hippo, etc.)

• To do this in Spring, we make use of its ability to specify collection classes in 
its configuration XML files (see next slide)

• The main routine is simply a variant on what we’ve seen before

• we will load a “zoo.xml” configuration file

• retrieve the “zoo” bean

• and invoke its “exerciseAnimals()” method
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The zoo.xml file
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<?xml version="1.0" encoding="UTF-8"?>1
<beans xmlns="http://www.springframework.org/schema/beans"2
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3
       xmlns:lang="http://www.springframework.org/schema/lang"4
       xsi:schemaLocation="5
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd6
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">7

8
  <bean id="zoo" class="Zoo">9
    <constructor-arg index="0">10
      <list>11
        <ref local="bat" />12
        <ref local="cat" />13
        <ref local="dog" />14
        <ref local="elephant" />15
        <ref local="hippo" />16
        <ref local="lion" />17
        <ref local="rhino" />18
        <ref local="tiger" />19
        <ref local="wolf" />20
      </list>21
    </constructor-arg>22
  </bean>23

24
  <bean id="bat" class="Bat" />25
  <bean id="cat" class="Cat" />26
  <bean id="dog" class="Dog" />27
  <bean id="elephant" class="Elephant" />28
  <bean id="hippo" class="Hippo" />29
  <bean id="lion" class="Lion" />30
  <bean id="rhino" class="Rhino" />31
  <bean id="tiger" class="Tiger" />32
  <bean id="wolf" class="Wolf" />33

34
</beans>35

36

Here we define instances of 
animal subclasses; this is 
where the subclass names 
are referenced (nowhere else)

Here, we define that there is a 
bean called “zoo” and it takes 
a parameter to its constructor 
that is a list of beans, in this 
case beans that reference the 
Animal subclasses below



Wrap Up

• This represents a barebones introduction to dependency injection frameworks 

• You’ve seen only a smidgen of Spring’s functionality

• But, you’ve seen the core feature of dependency injection frameworks

• The ability to remove the names of concrete classes out of your source 
code while having those classes automatically instantiated and injected 
into your system based on configuration metadata
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Semester Wrap-Up

• Reviewed core OO A&D concepts and techniques

• Covered design patterns and saw examples of how they can be integrated 
into OO A&D life cycles

• Saw a wide range of patterns (there are many more out there)

• Covered features of the Android and iOS mobile application frameworks

• Saw the use of design patterns in these frameworks

• Covered refactoring, test driven design, object-relational mapping and 
dependency injection

• Provided you an opportunity to build a mobile app and/or web service and 
make use of design patterns in your prototypes
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Coming Up Next Time

• All done!

• (Well almost, I’ll see most of you on Monday for project demos!)

• Have a great winter break!
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