
© Kenneth M. Anderson, 2011

MORE DESIGN TECHNIQUES
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 23 — 11/07/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Cover the material in Chapters 15 & 16 of our textbook

Commonality and Variability Analysis

The Analysis Matrix

And, jump ahead and cover a design pattern

Decorator from Chapter 17

2

© Kenneth M. Anderson, 2011

More Design Techniques

You may not always be able to use design patterns to start your designs

You can however apply the lessons learned from studying design
patterns in ALL of your designs

For instance, you can apply a technique known as commonality
and variability analysis to identify variation in your problem
domains

You can then use design pattern principles to encapsulate that
variation and protect your software from potential changes

3

© Kenneth M. Anderson, 2011

Examine the Problem Domain (I)

One key aspect of design is identifying what elements of
the problem domain belong in your solution domain

You need to identify the right things to model (or
track) in your software

You want to do this as accurately as possible because
the next step is to identify the relationships between
those concepts

Once you have the relationships defined, changes to
the design become more difficult

4

© Kenneth M. Anderson, 2011

Examine the Problem Domain (II)

Once you have concepts and relationships defined, inserting
new concepts and relationships is less easy

You have to decide where the new concepts “fit” and how
they will be integrated into the existing design

Existing relationships may change or be removed and new
ones will be inserted

This is why maintenance is so hard, when you are asked to
change existing functionality or add new functionality, you
must deal with the web of concepts and relationships that
already exist in the system

5

© Kenneth M. Anderson, 2011

Use Commonality and Variability
Analysis

Commonality and Variability Analysis attempts to identify
the commonalities (generic concepts) and variations
(concrete implementations) in a problem domain

Such analysis will produce the abstract base classes that
can be used to interface with the concrete
implementations in a generic way that will enable
abstraction, type encapsulation and polymorphism

Our authors demonstrate/explain the technique by
example by applying it to the CAD/CAM problem

6

© Kenneth M. Anderson, 2011

Applying CVA to CAD/CAM

The CAD/CAM problem consists of

Version 1 and Version 2 of the CAD/CAM System

Slots, holes, cutouts, etc.

Version 1 Models and Version 2 Models

These are concrete variations of generic concepts

CAD/CAM system, Feature, Model

Generically: Commonality C has variations a, b, c

7

© Kenneth M. Anderson, 2011

Another technique

Take any 2 elements of the problem domain

And ask

Is one of these a variation of the other?

Are both of these a variation of something else?

Iterate until you start to converge on the commonalities

Each with their associated variations

which are just concrete elements of the domain

8

© Kenneth M. Anderson, 2011

Potential Problem (I)

Each commonality should be based on one issue

Beware collapsing two or more issues into a concept

For the CAD/CAM domain, you might do something like

CAD/CAM Features

V1Slot, V2Slot, V1Cutout, V2Cutout

Here you have collapsed “feature” and “version” into a
single concept

9

© Kenneth M. Anderson, 2011

Potential Problem (II)

What you need is

CAD/CAM System

V1 and V2 (versions)

Feature

Slots, cutouts, holes, etc.

Now you have one issue per concept

and this will lead to cohesive designs

10

© Kenneth M. Anderson, 2011

Translating to Classes

11

Model

V1Model V2Model Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2011

Identify Relationships

12

If you are confident that you have identified the major concepts of the
domain and their variations, you are then ready to identify the
relationships that exist between them

Models are aggregations of Features

Models are generated from a CAD/CAM System

Features are generated from a CAD/CAM System

We’ll represent “is generated from” as a uses relationship, since it is
conceivable that once these concepts are instantiated, they access
the CAD system from time to time

© Kenneth M. Anderson, 2011

Translating to Class Diagram

13

Model

V1Model V2Model Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2011

Reflect on the Variations

14

We have a duplication in the current design

V1Model and V2Model

AND

V1System and V2System

We can remove this duplication by deciding that a model
produced by V1 will have features that are different than a
model produced by V2 and so we can get by with just the
variation in the CAD/CAM system

© Kenneth M. Anderson, 2011

Updated Class Diagram

15

Model

Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2011

Connect to the Actual Systems

16

We must now connect this design to the actual CAD/
CAM Systems

CAD/CAM Version 1 has the C API

CAD/CAM Version 2 has the OO API

© Kenneth M. Anderson, 2011

Updated Class Diagram

17

Model

Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

V1Modules OOGFeature

OOGCutout

© Kenneth M. Anderson, 2011

Compare with Previous Design

18

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

OOGFeature

•••

© Kenneth M. Anderson, 2011

Comparison with Design Pattern
Approach (I)

19

CVA produced a design that is similar to the design we created
in Lecture 20 using an approach that was driven by design
patterns

Identify patterns that provide context for other patterns

The two approaches are synergistic and can be used in tandem

Design Patterns establish relationships between entities in
the problem domain

CVA identifies entities in the problem domain and whether
one entity is a variation of another

© Kenneth M. Anderson, 2011

Comparison with Design Pattern
Approach (II)

20

The difference is that CVA can be used in all design contexts

whereas the design pattern approach requires that you know
of design patterns that match the relationships found in the
problem domain

© Kenneth M. Anderson, 2011

Another Technique: Analysis Matrix

Chapter 16 presents another design technique

known as the Analysis Matrix

to help designers deal with large amounts of variations in
a problem domain

Uses an e-commerce system example in which packages
must be shipped to customers in response to orders

where different rules become active depending on the
countries involved in the order

21

© Kenneth M. Anderson, 2011

Variations

Real world domains have a lot of variations

Patients always check in to a hospital before they are
admitted

UNLESS it is an emergency

IN WHICH CASE they go to the emergency
room to get stabilized and

THEN get admitted to the hospital

(IF REQUIRED)

22

© Kenneth M. Anderson, 2011

Just like in CVA, Find Concepts

When dealing with lots of variations, you still ask the question

what concept is this “thing” a variation of

To organize this work, you create a matrix

a concept becomes a “row header”

a variation is an entry in the matrix

related variations go into a column

and the column header groups the variations by a particular
scenario relevant to the problem domain

23

© Kenneth M. Anderson, 2011

Requirements are the Input

The input to this process are the requirements gathered from
the customer

For the e-commerce system, we might have reqs like:

Calculate shipping based on the country

In the US, state and local taxes apply to the orders

In Canada, use GST and PST for tax

Use U.S. postal rules to verify addresses

…

24

© Kenneth M. Anderson, 2011

Organize by Matrix

25

U.S. ORDERS CANADIAN ORDERS

CALCULATE FREIGHT

VERIFY ADDRESSES

CALCULATE TAXES

MONEY

USE U.S. POSTAL RATES USE CANADIAN RATES

USE U.S. POSTAL RULES USE CANADIAN RULES

USE STATE AND LOCAL TAX RATES USE GST AND PST

U.S. DOLLARS CANADIAN DOLLARS

© Kenneth M. Anderson, 2011

Organize by Matrix

26

U.S. ORDERS CANADIAN ORDERS

CALCULATE FREIGHT

VERIFY ADDRESSES

CALCULATE TAXES

MONEY

USE U.S. POSTAL RATES USE CANADIAN RATES

USE U.S. POSTAL RULES USE CANADIAN RULES

USE STATE AND LOCAL TAX RATES USE GST AND PST

U.S. DOLLARS CANADIAN DOLLARS

CONCRETE IMPLEMENTATIONS OF SHIPPING RATES

CONCRETE IMPLEMENTATIONS OF POSTAL RULES

CONCRETE IMPLEMENTATIONS OF TAX RULES

GENERIC CLASS THAT HANDLES CURRENCIES

© Kenneth M. Anderson, 2011

Organize by Matrix

27

U.S. ORDERS CANADIAN ORDERS

CALCULATE FREIGHT

VERIFY ADDRESSES

CALCULATE TAXES

MONEY

USE U.S. POSTAL RATES USE CANADIAN RATES

USE U.S. POSTAL RULES USE CANADIAN RULES

USE STATE AND LOCAL TAX RATES USE GST AND PST

U.S. DOLLARS CANADIAN DOLLARS

STRATEGY PATTERN

STRATEGY PATTERN

STRATEGY PATTERN

GENERIC CLASS THAT HANDLES CURRENCIES

© Kenneth M. Anderson, 2011

Organize by Matrix

28

U.S. ORDERS CANADIAN ORDERS

CALCULATE FREIGHT

VERIFY ADDRESSES

CALCULATE TAXES

MONEY

USE U.S. POSTAL RATES USE CANADIAN RATES

USE U.S. POSTAL RULES USE CANADIAN RULES

USE STATE AND LOCAL TAX RA USE GST AND PST

U.S. DOLLARS CANADIAN DOLLARS

THESE IMPLEMENTATIONS
ARE USED WHEN WE HAVE

A U.S. CUSTOMER

THESE IMPLEMENTATIONS
ARE USED WHEN WE HAVE
A CANADIAN CUSTOMER

© Kenneth M. Anderson, 2011

Organize by Matrix

29

U.S. ORDERS CANADIAN ORDERS

CALCULATE FREIGHT

VERIFY ADDRESSES

CALCULATE TAXES

MONEY

USE U.S. POSTAL RATES USE CANADIAN RATES

USE U.S. POSTAL RULES USE CANADIAN RULES

USE STATE AND LOCAL TAX R USE GST AND PST

U.S. DOLLARS CANADIAN DOLLARS

ABSTRACT FACTORY ABSTRACT FACTORY

© Kenneth M. Anderson, 2011

Discussion (I)

This technique gets more useful as the matrix gets bigger

If you have requirements for a new scenario that adds
an additional row (concept) that you have not
previously considered

this indicates that your previous scenarios were
incomplete

you can now go back and fill in the missing pieces

30

© Kenneth M. Anderson, 2011

Discussion (II)

Sometimes your special cases will have special cases

In the U.S. different shippers may have different
requirements and different fees

You can capture this information in another analysis
matrix that shares some of the columns and rows of
the original but which add additional concepts just for
those special situations

31

© Kenneth M. Anderson, 2011

Discussion (III)

We’ve now seen four design techniques

The OO A&D method of Homework 3

Design Pattern-Driven Design

Commonality and Variability Analysis

Analysis Matrix

Which one should we use?

Whatever helps you make progress! You might use more
than one and switch between them until they converge

32

Decorator Pattern

• The Decorator Pattern provides a powerful mechanism for adding new
behaviors to an object at run-time

• The mechanism is based on the notion of “wrapping” which is just a fancy
way of saying “delegation” but with the added twist that the delegator and
the delegate both implement the same interface

• You start with object A that implements interface C

• You then create object B that also implements interface C

• You pass A into B’s constructor and then pass B to A’s client

• The client thinks its talking to A but its actually talking to B

• B’s methods augment A’s methods to provide new behavior

33

Why? Open-Closed Principle

• The decorator pattern provides yet another way in which a class’s runtime
behavior can be extended without requiring modification to the class

• This supports the goal of the open-closed principle:

• Classes should be open for extension but closed to modification

• Inheritance is one way to do this, but composition and delegation are
more flexible (and Decorator takes advantage of delegation)

• As the Gang of Four put it: “Decorator let you attach additional
responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.”

• Our “Starbuzz Coffee” example, taken from Head First Design Patterns,
clearly demonstrates why inheritance can get you into trouble and why
delegation/composition provides greater run-time flexibility

34

Starbuzz Coffee

• Under pressure to update their “point of sale” system to keep up with their
expanding set of beverage products

• Started with a Beverage abstract base class and four implementations:
HouseBlend, DarkRoast, Decaf, and Espresso

• Each beverage can provide a description and compute its cost

• But they also offer a range of condiments including: steamed milk, soy,
and mocha

• These condiments alter a beverage’s description and cost

• The use of the word “Alter” here is key since it provides a hint that
we might be able to use the Decorator pattern

35

Initial Starbuzz System

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

With inheritance on your brain, you may add condiments to this design in
one of two ways

1. One subclass per combination of condiment (wont work in general but especially not in Boulder!)
2. Add condiment handling to the Beverage superclass

36

Approach One: One Subclass per Combination

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

cost()
HouseBlendWithSteamedMilkandMocha

cost()
HouseBlendWithSoyandMocha

cost()
EspressoWithSoyAndMocha

cost()
DecafWithWhipandSoy

This is incomplete, but you can see the problem…
(see page 81 for a more complete picture)

37

Approach Two: Let Beverage Handle Condiments

getDescription()
hasMilk()
setMilk()
hasSoy()
...
cost()

description
milk
soy
mocha
whip

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

Houston, we have a problem…

1. This assumes that all concrete Beverage classes need these condiments
2. Condiments may vary (old ones go, new ones are added, price changes,
etc.), shouldn’t they be encapsulated some how?
3. How do you handle “double soy” drinks with boolean variables? 38

Decorator Pattern: Definition and Structure

methodA()

methodB()

Component

methodA()

methodB()

...

att1

att2

ConcreteComponent
methodA()

methodB()

Decorator

methodA()

methodB()

...

ConcreteDecoratorA

methodA()

methodB()

...

newatt1

newatt2

ConcreteDecoratorB

component Inheritance is used to make
sure that components and
decorators share the same
interface: namely the public
interface of Component
which is either an abstract
class or an interface

At run-time, concrete
decorators wrap
concrete components
and/or other concrete
decorators

The object to be
wrapped is typically
passed in via the
constructor 39Each decorator is cohesive, focusing just on its added functionality

Client Perspective

Concrete
DecoratorB

Concrete
DecoratorA

Client
Concrete

Component

foo()

Concrete
Component

Client

foo() foo()

foo()

BEFORE

AFTER

In both situations,
Client thinks its talking to
a Component. It shouldn’t
know about the concrete
subclasses. 40

StarBuzz Using Decorators (Incomplete)

getDescription()
cost()

Beverage

cost()
HouseBlend

getDescription()
cost()

CondimentDecorator

getDescription()
cost()

Milk
getDescription()
cost()

Soy

beverage

41

Demonstration

• Starbuzz Example

• Use of Decorator Pattern in java.io package

• InputStream == Component

• FilterInputStream == Decorator

• FileInputStream, StringBufferInputStream, etc. == ConcreteComponent

• BufferedInputStream, LineNumberInputStream, etc. == ConcreteDecorator

42

© Kenneth M. Anderson, 2011

The Textbook’s Take (I)
As we saw, Decorator offers another solution to the problem of
rapidly multiplying combinations of subclasses

we saw examples of other solutions back in Chapters 8 and 10
where we made use of the strategy pattern and the bridge
pattern

The decorator pattern provides a means for creating different
combinations of functionality by creating chains in which each
member of the chain can augment or “decorate” the output of the
previous member

And, it separates the step of building these chains from the use
of these chains

43

© Kenneth M. Anderson, 2011

The Textbook’s Take (II)

The Decorator pattern comes into play when there are a
variety of optional functions that can precede or follow
another function that is always executed

This is a very powerful idea that can be implemented in a
variety of ways (see the end of Chapter 17 for a
discussion of some of the variations)

The fact that all of the classes in the decorator pattern
hide behind the abstraction of Component enables all
of the good benefits of OO design discussed previously

44

© Kenneth M. Anderson, 2011

Wrapping Up

Commonality and Variability Analysis

helps us identify generic concepts in our problem domains
and their associated concrete implementations

Analysis Matrix

helps us deal with variations in a problem domain and
provide hints as to the concepts they are related to and
how to implement them

Decorator Pattern

Another technique for applying the open-closed principle

45

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 24: Observer, Template Method

Chapters 18 and 19

Plus Two Bonus Design Patterns!

Work on Homework 6, which is due by next Friday

46

