
© Kenneth M. Anderson, 2011

ADVANCED IOS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 22 — 11/03/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Present a few additional topics and concepts related to
iOS programming

persistence

serialization

advanced view controllers

navigation, image picker

But First: Objective-C 2.0 Categories and Protocols

2

© Kenneth M. Anderson, 2011

Objective-C Categories (I)

Have you ever been in a situation where you’re using a class
provided by a library and you say

“I wish this class had a method that did …”

In most languages, if you want to add a method to an existing
class, say java.lang.String, you would need to create a subclass:
“class MyString extends String”

Warning: Abandon All Hope, Ye Who Enter Here!

This approach is fraught with peril

In Objective-C, you don’t have to subclass: just use a category

3

© Kenneth M. Anderson, 2011

Objective-C Categories (II)

Objective-C Categories let you re-open a class definition
and add a new method!

The original class will then act as if it had that method
all along!

Your new method is often implemented using just the
publicly available methods of the original class and so
you don’t require any special knowledge of the original
class to add the new method

4

© Kenneth M. Anderson, 2011

Objective-C Categories (IV)

To create a category, you use the following syntax

@interface ExistingClass (NameOfCategory)

<method signatures>

@end

@implementation ExistingClass (NameOfCategory)

<method defs>

@end

5

© Kenneth M. Anderson, 2011

Objective-C Categories (V)

We’ve seen this before with class extensions; a class extension uses the
same syntax but doesn’t provide a name for the category (we’ll see
examples of class extensions in today’s example app)

Here’s an example of extending the built-in NSArray class

@interface NSArray (NestedArrays)

- (NSInteger) countOfNestedArray:(NSUInteger)pos;

@end

6

© Kenneth M. Anderson, 2011

Objective-C Categories (VI)

Example of extending built-in NSArray class

@implementation NSArray (NestedArrays)

- (NSInteger) countOfNestedArray:(NSUInteger)pos {

 NSArray *subArray = [self objectAtIndex:section];

 return [subArray count];

}

@end

7

© Kenneth M. Anderson, 2011

Objective-C Categories (VII)

Now, you simply include the category in new code and NSArray will act
as if it always had the method countOfNestedArray: (!!!)

#import "NSArray-NestedArrays.h"

NSArray *foo = <code to get an array>

NSInteger subarray_count =

 [foo countOfNestedArray:2];

NSLog(@“%d items in subarray”, subarray_count);

8

© Kenneth M. Anderson, 2011

Protocols (I)

Protocols are Objective-C’s version of Java’s Interfaces

They allow you to define a type that is guaranteed to
implement a particular set of methods

A class can be declared as “conforming” to a particular
protocol

You can then refer to all objects that conform to a
protocol in a uniform manner

Protocols are typically used to define the interface of a
delegate

9

© Kenneth M. Anderson, 2011

Protocols (II)
To define a protocol, you use the following syntax

@protocol ProtocolName

 <method signatures>

@end

To conform to a protocol, you use the following syntax

@interface MyClass <ProtocolName1, ProtocolName2>

 …

@end

10

The compiler will then make
sure that you implement the
methods of the protocol

© Kenneth M. Anderson, 2011

Protocols (III)

To declare a variable or parameter to only accept instances of a certain
protocol, you use the syntax

id <ProtocolName> foo = objectThatConformsToProtocolName;

You’ll see examples of this in today’s sample code

In particular, ProfilesViewController conforms (or implements) the
UITableViewDataSource and UITableViewDelegate protocols and
ProfileViewController conforms to the
UIImagePickerControllerDelegate protocol

11

© Kenneth M. Anderson, 2011

Example Application

Profile Viewer

Similar to what we saw on the Android side of the
fence

Will develop complete application step-by-step

taking care of the data model via serialization first

adding view controllers one-by-one

then updating the data model to use Core Data

12

© Kenneth M. Anderson, 2011

iOS 5

Will also feature a few aspects of iOS 5 in that

I’ll be using an iOS 5 project template

I’ll be taking advantage of automatic reference counting

13

© Kenneth M. Anderson, 2011

Automatic Reference Counting (I)

In previous lectures, I introduced you to Objective-C 2.0
memory management

alloc, init, retain, release, autorelease

and discussed the various patterns that need to be
followed to ensure that no memory leaks occur in your
iOS programs

With automatic reference counting (ARC) all of that goes
away!

14

© Kenneth M. Anderson, 2011

Automatic Reference Counting (II)

Well, sort of.

All of it still happens BUT the compiler does it for you!

There are some “corner cases” that advanced developers
need to be aware of

but for the most part, you delete all of your retain-
release-autorelease related code

Indeed, invoking those functions when ARC is turned on
results in a compiler error!

15

© Kenneth M. Anderson, 2011

Automatic Reference Counting (III)

For the curious, the “corner cases” involve

retain cycles: “A retains B and B retains A”

use of Core Foundation Objects

and certain uses of blocks

I won’t discuss the latter two but with the former the
workaround is that developers must either

add code to explicitly break the cycle or annotate one
of the pointers with the qualifier “weak”

16

© Kenneth M. Anderson, 2011

Automatic Reference Counting (IV)

For more information, see Mike Ash’s post for details

http://www.mikeash.com/pyblog/friday-qa-2011-09-30-
automatic-reference-counting.html

Mike Ash’s website is an excellent resource for
information on advanced Mac OS X and iOS
programming topics

17

http://www.mikeash.com/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html
http://www.mikeash.com/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html
http://www.mikeash.com/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html
http://www.mikeash.com/pyblog/friday-qa-2011-09-30-automatic-reference-counting.html

© Kenneth M. Anderson, 2011

Let’s Get Started

Bring up the New Project dialog in XCode 4.2

Select the “Empty Application” template under the iOS
Application category

Configure the project to be for the iPhone only

Name the project ProfileViewer

Turn on ARC

Indicate a location to store the project on disk

18

© Kenneth M. Anderson, 2011

Initial Clean-Up (I)

The “Empty Application” template is very straightforward

It contains a single AppDelegate class which gets
instantiated by the single main.m class

There is no default .xib file as we’ve seen in other
project templates

All we need to do at first is clean-up AppDelegate.m by
deleting all of the code in it except for

application:didFinishLaunchingWithOptions:

19

© Kenneth M. Anderson, 2011

Initial Clean-Up (II)

Note the presence of ARC in AppDelegate.h

The property that maintains a pointer to the application
window is defined as follows

@property (strong, nonatomic) UIWindow *window;

The “strong” keyword tells ARC that we want to retain any
instance passed to this property and keep it around.

If we ever switch to a new window (which we won’t)
ARC would make sure to automatically release the
previous instance

20

© Kenneth M. Anderson, 2011

Next the Model

We need a Profile class to store

First Name

Last Name

e-mail address

(and eventually a photo)

We need a Profiles class to store the instances of Profile
created at run-time

21

© Kenneth M. Anderson, 2011

Profile

Use the New File Dialog to add Profile.h and Profile.m to
the Project.

Select the Objective-C class from the iOS Cocoa Touch
category

Name the class “Profile” and make sure its a subclass of
NSObject

This provides you with a skeleton class definition

22

© Kenneth M. Anderson, 2011

Profile Properties

Add the following properties in Profile.h

@property (nonatomic, strong) NSString* firstName;

@property (nonatomic, strong) NSString* lastName;

@property (nonatomic, strong) NSString* email;

Now synthesize these properties in Profile.m

e.g. @synthesize firstName = _firstName;

23

© Kenneth M. Anderson, 2011

Create the designated initializer

- (id) initWithFirstName:(NSString*)first
 LastName:(NSString*)last
 Email:(NSString*)email;

See example code for details

Then override the inherited initializer to call the designated
initializer

- (id) init;

See example code for details; Note, we’ll never actually
call this method but it’s good form to define it

24

© Kenneth M. Anderson, 2011

Create a randomProfile method

This method is a class method that can be used to
generate a random profile

+ (id) randomProfile

The “+” indicates that this is not an instance method but a
class method that can be invoked on Profile directly

See example code for details

25

© Kenneth M. Anderson, 2011

Additional methods
- (NSString*) fullName {

 return [NSString stringWithFormat:@"%@ %@",

self.firstName, self.lastName];

}

- (NSString*) description {

 return [NSString stringWithFormat:@"%@ <%@>",

[self fullName], self.email];

}

26

© Kenneth M. Anderson, 2011

Demo (I)

We now have enough code in Profile to test it

We will

temporarily import Profile into our AppDelegate

modify the didFinishLaunchingWithOptions: method

to create and print out some random Profile objects

27

© Kenneth M. Anderson, 2011

Demo (II)

 for (int i = 0; i < 10; i++) {

 NSLog(@"%@", [Profile randomProfile]);

 }

Believe it or not, the above code tests all of the
methods of our Profile class, save one

28

© Kenneth M. Anderson, 2011

Profiles (I)

Now, we need to add a class to store a collection of
Profile objects

These two classes will serve as the initial model for our
Profile Viewer application

Use the New File menu command to add a Profiles class
to the project, just as you did for the Profile class

29

© Kenneth M. Anderson, 2011

Profiles (II)

We will provide a method to retrieve an immutable array of
Profiles and to create a new random profile

#import <Foundation/Foundation.h>

@class Profile; // Note simply declares that Profile is a class

@interface Profiles : NSObject

- (NSArray*) allProfiles;

- (Profile*) createProfile;

@end

30

© Kenneth M. Anderson, 2011

Profiles (III)

We will store the profiles in a mutable array that is
declared as a private property in a class extension that
appears in the .m file

See example code for details

We can quickly modify our test code to verify that this
provides enough functionality to keep track of a set of
profiles

See example code for details

31

© Kenneth M. Anderson, 2011

Initial User Interface

We will first create a view controller that displays profiles
in a table view

This class will be called ProfilesViewController

It will be a subclass of UITableViewController

BUT when we create it, we will tell XCode that it is
a subclass of NSObject

The NSObject subclass template is clean

We will create our table view “bottom up”

32

© Kenneth M. Anderson, 2011

The steps

Create a new NSObject subclass ProfilesViewController

Change its .h file by replacing NSObject with
UITableViewController

Set up its initializers

Change AppDelegate to create an instance and set it as
the rootViewController

Delete all Profile and Profiles-related code

Run to see empty table view

33

© Kenneth M. Anderson, 2011

Connect to Data Source

Now we need to connect ProfilesViewController to its
data source: the Profiles object created earlier

We will instantiate Profiles in ProfilesViewController’s
init method and add 20 random profiles to it

We will also implement the core
UITableViewDataSource methods by calling Profiles as
needed

See example code for details

34

© Kenneth M. Anderson, 2011

Ready for Navigation (I)

We are going to lay the ground work for being able to
edit profiles by adding ProfilesViewController to a
UINavigationController

This will provide us with a navigation bar that will allow us
to add a title, and two buttons: “edit” and “new”

Let’s get this all configured; we’ll then implement the
event handlers for our two buttons

35

© Kenneth M. Anderson, 2011

Ready for Navigation (II)

To accomplish this, we must

Create a navigation controller in AppDelegate.m

Set ProfilesViewController as its rootViewController

Set the navigation controller as the rootViewController
of the window

Modify ProfilesViewController to configure its
navigation item with a title and the two buttons

See example code for details

36

© Kenneth M. Anderson, 2011 37

The previous steps results in an app that
looks like this

The UINavigationController provides the
navigation bar at the top and space for the
ProfilesViewController

By configuring its navigationItem,
ProfilesViewController populates the
navigation bar with a title and two buttons

The edit button is functional in that it puts
the table into or out of edit mode; this is
functionality built right into the navigation
controller and the table view controller

The plus button is not yet functional

© Kenneth M. Anderson, 2011 38

Activate the Plus Button

To make the “add profile” button functional we will

implement the handleAdd: event handler

- (void) handleAdd:(id) sender {

 [self.profiles createProfile];

 [self.tableView reloadData];

}

we will remove the code that creates 20 random profiles
in the initializer

© Kenneth M. Anderson, 2011

Handle Editing

In order to handle “edit mode”, we need to

be able to delete profiles

be able to move them around

Showed similar code earlier in the semester

As a result, I won’t go into detail on this step

Changes are made to Profiles and to
ProfilesViewController

39

© Kenneth M. Anderson, 2011

Detail View (I)

Now we need a way to edit the individual values of the
Profile

We will create a new view controller called
ProfileViewController.

It will display each of the three values of a Profile and
let us edit their values

To get started, create a new file using the
UIViewController subclass template. Make sure to request
that a .xib file be created. Delete all the code in the .m file.

40

© Kenneth M. Anderson, 2011

Detail View (II)

Drag three labels and three text fields to the user interface
in the .xib file

Call the fields First Name, Last Name, and Email.

Bring up the assistant editor and control drag from the
text fields to the ProfileViewContoller.h file to
autogenerate the property definitions

Configure the viewDidLoad method to set the
background to the same color as a UITableView

this will provide some continuity between views

41

© Kenneth M. Anderson, 2011

Detail View (III)

Next, edit ProfilesViewController’s init method to use a
grouped table

This ensures that the UITableView’s background color
is shown; it set’s up the visual coherence between the
two views

Let’s also add a disclosure triangle to each table cell to
indicate that you click the row to see more details

42

© Kenneth M. Anderson, 2011

Detail View (IV)

Finally, we have to

detect when a row has been selected

get its associated Profile object

create an instance of ProfileViewController

configure it (we’ll add a Profile property to do this)

push it onto the UIViewController

implement viewWillAppear and viewWillDisappear

43

© Kenneth M. Anderson, 2011

Let’s add images to profiles

Design will involve

Adding a UIImageView to ProfileViewController

Adding a button to invoke UIImagePickerController

Using UIImagePickerController to take/select a picture

Add an image attribute to Profile to keep track of
image data

44

© Kenneth M. Anderson, 2011

Configuring ProfileViewController

Add UIImageView and UIToolbar to
ProfileViewController’s xib file

Ensure that the proper connections are made

We’ll have an event handler named takePicture: and
we’ll have a property that points at the UIImageView

In takePicture:, we’ll assign the UIImage object to the
profile

45

© Kenneth M. Anderson, 2011

Persistence (I)

So far, our app can create and edit data

but that data does not persist between runs of the
system

We will first take advantage of Objective-C’s serialization
mechanism, which is known as Archiving

46

© Kenneth M. Anderson, 2011

Persistence (II)

To add support for archiving, we must change Profile so

it declares support for the NSCoding protocol

implements a method called encodeWithCoder :

this is called when saving an object

implements a method called initWithCoder :

this is called when loading an object

We also must get a handle to a directory for our app

47

© Kenneth M. Anderson, 2011

Persistence (III)

Finally, we need to configure our app to save our changes

We will add calls to save changes at appropriate spots
in ProfilesViewController

Such as

after creating, deleting or editing a Profile

48

© Kenneth M. Anderson, 2011

Coming Up Next

Presentations due this Friday

Homework 5 due on Monday

Lecture 23: Commonality and Variability Analysis & The
Analysis Matrix

Chapters 15 and 16

Lecture 24: Decorator, Observer, Template Method

Chapters 17, 18 and 19

49

