
© Kenneth M. Anderson, 2011

INTERMEDIATE IOS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 17 — 10/18/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Learn more about iOS

In particular, focusing on the concept of views and their
associated view controllers

But also covering: autorelease, @selector, the use of
Instruments to track allocations, gesture recognizers,
animation, split view controllers & table view
controllers!

2

© Kenneth M. Anderson, 2011

iOS Fundamentals (I)

Each iOS application has

one application delegate

one window

one or more view controllers

each view controller has one view that typically has
many sub-views arranged in a tree structure

e.g. views contain panels contain lists contain items…

3

© Kenneth M. Anderson, 2011

iOS Application Architecture

4

sharedApplication()
UIApplication

delegate
UIApplicationDelegate

UIWindow
window

UIViewController
rootViewController

UIView

subviews

*

Data structures
and resources
not shown

© Kenneth M. Anderson, 2011

iOS Fundamentals (II)

A window will have a “root” view controller

Some view controllers allow us to “push” a new view
controller onto a stack (similar to Android’s activity
stack)

the new view controller’s view is then displayed

When we “pop” that view controller off the
stack, we return to the view of the previous view
controller

5

© Kenneth M. Anderson, 2011

iOS Fundamentals (III)

At other times, we may switch the “root” view
controller entirely

the new view is displayed and the previous view
controller (and its view) is deallocated

6

© Kenneth M. Anderson, 2011

iOS Fundamentals (IV)

View controllers can be instantiated and activated via the
use of .xib files (as we saw in Lecture 13) or they can be
created programmatically

They, in turn, can create their view through the use of
a .xib file or create their view programmatically

We’ll see examples of both in this lecture

7

© Kenneth M. Anderson, 2011

iOS Fundamentals (IV)

View controllers are very powerful

they handle the creation of views

they handle navigation among views and other view
controllers

they help free up memory when a view is no longer
being displayed

they handle the rotation of views when a device’s
orientation changes

8

© Kenneth M. Anderson, 2011

Simple View-Based Application

Image Switcher

View-Based Application Template

Two image views

One page controller

The two image views will work with the page
controller to make it look like multiple images are
available to display

9

© Kenneth M. Anderson, 2011

Framework from Slide 4 Writ Large

10

Take a look at the default launch code in AppDelegate.m

The app delegate has a reference to a window (by creating
one); it creates a view controller and assigns it as the
window’s rootViewController.

The View Controller’s View is created with the .xib file loads

© Kenneth M. Anderson, 2011

Step 1: Edit View Controller’s XIB File

Edit ViewController.xib

Change the view’s background to black

Add two image views and one page controller

one image view directly on top of the other

the page controller should be “on top” of the two image
views; it should be configured to have 5 pages

tag the image views as “0” and “1” (using attributes pane)

Use the outline view of the dock to select the views

11

© Kenneth M. Anderson, 2011

Step 2: Generate outlets

XCode can

auto-generate properties in the view controller

and

generate the connections between the properties in
the .h file and the widgets in the .xib file

Enable the assistant editor by clicking the tuxedo icon

Then control drag from the .xib to the .h

XCode automatically picks the right .h file

12

© Kenneth M. Anderson, 2011

Step 2: Continued

When prompted name the outlets

imageOne (tag: 0), imageTwo (tag: 1), pages

Switch to ViewController.m

You will see that XCode automatically

added an @synthesize for each property

added statements to dealloc and viewDidUnload to
take care of releasing the properties at the
appropriate time

13

© Kenneth M. Anderson, 2011

Step 2: Continued

To follow the guidelines I outlined in the previous lecture, we
will want to

add a name for the instance variable

@synthesize pages = _pages;

update viewDidLoad to use properties

self.pages = nil;

update dealloc to use the new instance variable name

[_pages release];

14

© Kenneth M. Anderson, 2011

Step 3: Add Images

You can do this via Drag and Drop or
Project ⇒ Add to Project…

Tell XCode to copy the files

You want the images to end up in the
Resources folder of the project view

So select all the image files, right
click, and select “New Group from
selection”

Rename group to “Resources”

15

© Kenneth M. Anderson, 2011

Step 4: Write the Code

We need to write code for two methods

The first is viewDidLoad; This is a view controller
method that gets invoked just after it has created its
view and just before that view gets displayed

This is your opportunity to initialize the view

The second is pageTurning:; this is a method we
will create ourselves; we’ll tell the page control to call
this method when the user asks it to turn the page

16

© Kenneth M. Anderson, 2011

viewDidLoad (I)

In this method, we will

ask one image view to load an image

each image loaded will be cached automatically

hide the other image view

set up our variables “front” and “back”

tell the page control which method to invoke

17

© Kenneth M. Anderson, 2011

viewDidLoad (II)

18

© Kenneth M. Anderson, 2011

WAIT A MINUTE!!!

19

self.front? self.back? @selector(pageTurning:)

Where are these defined?

The answer : nowhere… yet!

These two properties and the method will

help us swap between images, and

serve as the event handler when the page control is
clicked

© Kenneth M. Anderson, 2011

Where do we put them?

They are thus features of the view controller that are not
public; we want access to them in the .m file but we don’t
want other classes to know about them

Solution: Objective-C 2.0 Class Extensions

A class extension allows us to reopen the class
definition and add additional features that are only
visible to the .m file

If you define properties in the class extension, you still
have to @synthesize them in the @implementation section

20

© Kenneth M. Anderson, 2011

Syntax of Class Extension

@interface ClassName ()

<property and method defs go here>

@end

21

Don’t forget
to synthesize
the front and
back
properties!

© Kenneth M. Anderson, 2011

Back to viewDidLoad (III)

22

© Kenneth M. Anderson, 2011

Discussion of Code (I)

Having defined and synthesized the front and back
properties, we can see that

they simply point at the image views and keep track of
which one is visible (front) and which one is invisible

23

© Kenneth M. Anderson, 2011

Discussion of Code (II)

Having declared the pageTurning: method, we can see that
the last thing viewDidLoad does is connect the
UIPageControl to the pageTurning: method

The method call
addTarget:action:forControlEvents: is
invoked on self.pages (the UIPageControl)

It (essentially) says:

when your value changes invoke pageTurning: on
“self ” which is our ViewController object

24

This is equivalent to control dragging from the widget to the event
hander in the XIB Editor

© Kenneth M. Anderson, 2011

Discussion of Code (III)

25

Note the use of

@selector(pageTurning:)

to reference the method that needs to be invoked

Every method is given an id at run-time

@selector(method name) returns that id and
allows it to be invoked dynamically

© Kenneth M. Anderson, 2011

Step 5: Implement switching images

26

We will make sure we can change the images first

Then we’ll add animation

We will ask the page control which page we are turning to

We’ll then load the appropriate image into the
background image view and

swap the visibilities of the two image views and

update our pointers

© Kenneth M. Anderson, 2011 27

Whenever this
method gets
invoked, we know
that front points
to the image
currently displayed

we load the next
image into back

then we hide the
front and show the
back

and then we swap
our pointers

© Kenneth M. Anderson, 2011

Step 7: Add the animation

We’ll add a simple flip animation when we turn between
pages

The style of animation that we will use is very similar to
the “tweening” animation we saw for Android

The only difference is that iOS animations are specified
programmatically using Core Animation rather than
using resources as we did in Android

28

© Kenneth M. Anderson, 2011

Skinning the Cat

There are many ways to do animations in iOS

We will use the new “block-style” animations
introduced in iOS 4

But first, in order to do this right, we’ll need to keep track
of which page we are on and then determine if we need
to flip left or right

We’ll add an integer property called current to keep
track of the current page

29

© Kenneth M. Anderson, 2011 30

We can now use the current page to determine which way to flip and
call transitionWithView:duration:options:animations:completion: to
animate the change. This code uses blocks to specify what happens
during the animation and what happens after the animation is done

© Kenneth M. Anderson, 2011 31

Step 8: Add Gesture Recognition

Sometimes it’s hard to click on the page control just right

It’s more natural on a touch device to just swipe
between images

iOS makes it easy to detect a swipe gesture using its
gesture recognizers

© Kenneth M. Anderson, 2011

Game Plan

First, we’ll instantiate gesture recognizers in viewDidLoad:
and add them to our root view

Our image views don’t handle user input, so all touches
and swipes will be directed to the root view of the
view controller

Second, we’ll configure the gesture recognizers to call a
method called handleSwipe:

We’ll add handleSwipe to our class extension

32

© Kenneth M. Anderson, 2011 33

Image Switcher Wrap Up

Here we had a single view with three subviews

With some trickery, we made it look like our application
had five images

with only one ever being displayed at a time

We needed two image controls to enable the animation

The 5 images are cached (only loaded once); UIImage
is able to detect low memory situations and empty its
cache as needed

© Kenneth M. Anderson, 2011

Programmatic View Creation

So far we have created views only via XIB files

Occasionally, you will be in situations where you need
to create a view programmatically

To do this, you create a View Controller with no
associated XIB file and then create the contents of your
view in viewDidLoad;

View Controllers also have a method called
loadView; leave it alone, its default behavior does
just what we need

34

© Kenneth M. Anderson, 2011

View Switcher

Let’s create an application with three view controllers

Each view controller will programmatically create a
view that contains a label and 2 buttons

The label will state which screen we are looking at

The buttons will take us to the other screens

To switch among the views, we will install the
appropriate view controller as the application window’s
root view controller

35

© Kenneth M. Anderson, 2011

Step 1: Create Window-Based iOS
Application

Call it View Switcher

This template contains only a single window and a
single app delegate

No view or view controller is created by default

Our window has a white background by default, so
that’s what we see if we run the default project

Each screen will have a different color (red, green, blue)
to distinguish our views from the window

36

© Kenneth M. Anderson, 2011

Step 2: Create Screen One

Select the Classes Folder and then invoke ⌘-N to bring
up the New File dialog

Indicate that you want an Objective-C class that is a
subclass of NSObject; name it ScreenOne

Now change its supertype to be UIViewController

The default template of UIViewController contains a
lot of code that can be confusing

better to start with NSObject’s clean template

37

© Kenneth M. Anderson, 2011

Step 3: Create Label and Buttons

At a high-level, we will

override the viewDidLoad method to

programmatically create a Screen One label and
“Go To Screen Two” and “Go To Screen Three”
buttons

set the background to a nice shade of red

Take a look at the source code for details

38

© Kenneth M. Anderson, 2011

Step 4: Arrange Screen One
Creation

Now that we have created the ScreenOne view controller,
we need to arrange for an instance of it to be created

To do this, we will override a method in our application
delegate,
application:didFinishLaunchingWithOptions:

This method gets called after the application has
launched but before the application’s window appears

We need to import ScreenOne.h, instantiate an
instance and set it as the root view controller

39

© Kenneth M. Anderson, 2011

Step 5: Create Screen Two and Three

These classes will be exactly the same as ScreenOne
except for label/button names and the background color
of the view

See example code for details

40

© Kenneth M. Anderson, 2011

Step 6: Wire up the Buttons

Since we are not using Interface Builder to create our
views, we have to wire our buttons to their event handlers
programmatically

Just like we did with the UIPageController in the
previous example

See sample code for details

Now, we need to implement the button event handlers

41

© Kenneth M. Anderson, 2011

Switching the root view controller (I)

Our button event handler has to do the following

Get a handle to the app delegate

Use the app delegate to get a handle to our window

Instantiate an instance of the new view controller

Autorelease the new view controller (hold that
thought)

Set the new view controller as the root view controller

42

© Kenneth M. Anderson, 2011

Switching the root view controller (II)

43

© Kenneth M. Anderson, 2011

autorelease? (I)

We have finally seen a situation that requires autorelease

This method is one of the memory management
routines; here is why we need it

If we don’t use it, then

we create an instance of the view controller

retain count defaults to 1

we then pass it to the window, which retains it

retain count incremented to 2

44

© Kenneth M. Anderson, 2011

autorelease? (II)

And then?

We never see that object again and so we are unable
to release it

When we finally set a new root view controller, the
previous root controller gets released and now its
retain count returns to 1

which means it never goes away: memory leak!

45

© Kenneth M. Anderson, 2011

autorelease? (III)

So, the question becomes how do we release the view
controller after we create it, so that eventually its retain
count will go to zero

We can’t release it before we pass it to window

If we do, its count goes to zero immediately and it gets
deallocated and we end up passing a deallocated
object to the window

So, we autorelease it

46

© Kenneth M. Anderson, 2011

autorelease? (IV)

When you autorelease the view controller

It gets added to the current autorelease pool, which is
automatically created before the event handler is called

It gets passed to the window: retain count == 2

The event handler ends and the pool is flushed; When
the pool is flushed, it releases all of the objects within it;
retain count == 1

When the root view controller is updated, the
previous root controller is released and deallocated

47

© Kenneth M. Anderson, 2011

Tracking Memory

We can run our app in a program called Instruments
which allows us to track allocations (among other things)

We can then verify that our view controllers are being
deallocated

We can then be confident that only one view
controller is ever allocated in the ViewSwitcher
application

Demo

48

© Kenneth M. Anderson, 2011

Split View Controller

Let’s take a look at a more complicated example

A Split View Controller was added when the iPad came out
to make it easy for an application to

have a list of items on the left

and a detail viewing space on the right

when an item in the list is selected, its details are displayed

the items are shown in a table when in landscape mode
and in a pop-up list when in portrait mode

49

© Kenneth M. Anderson, 2011

SplitView Template

The default template for a split view application is
configured, like all other templates, to work right away

It displays a simple list of items “row 1, row 2, etc.” and a
detail view containing a label

when a row is selected, the label updates

(see next slide)

50

© Kenneth M. Anderson, 2011 51

© Kenneth M. Anderson, 2011 52

Image Switcher Lives Again
Let’s explore the split-view template by recreating image switcher for
the iPad; Create a Split View-based application and call it SplitViewer

This template comes with

A split view controller created in MainWindow.xib

Two view controllers: root and detail

root is a subclass of UITableViewController

detail is a UIViewController that implements two
interfaces: UISplitViewControllerDelegate and
UIPopoverControllerDelegate

© Kenneth M. Anderson, 2011

Step One: Copy Images

Drag and Drop the images from Image Switcher into the
Resources folder of Split Viewer and copy them across

It’s important that you drag and drop the images into
the resources folder contained within the XCode
window

If you copy the images to the SplitViewer folder in
the Finder without copying them into the project,
XCode won’t be able to find them

53

© Kenneth M. Anderson, 2011

Step 2: Prepare the Detail View

We need to delete the label that is included in
DetailView.xib by default

Replace it with an image view

Center the image, make it big, set its autosize
constraints, etc.

Save your changes, add an outlet/property in the .h file
and synthesize the property in the .m file

Go back to IB and connect the UIImageView to the
property

54

© Kenneth M. Anderson, 2011

Step 3: Init array of image names

In the viewDidLoad method of the root view
controller, we will create an array of image names

We will then use this array to populate the table

We will also set the title of the navigation bar to “Lord of
the Rings”

55

© Kenneth M. Anderson, 2011

Populating a Table

To populate a table, you implement three methods

numberOfSectionsInTableView:

return 1

tableView:numberOfRowsInSection:

return the size of the array

tableView:cellForRowAtIndexPath:

Very powerful, slightly complex code (see next slide)

56

© Kenneth M. Anderson, 2011 57

The above code is an iOS design pattern that ensures that
you never allocate more table cells than you need

If a table cell scrolls off the top or bottom of a table, it
becomes available to be used again; that is, the call to
dequeueReusableCell… will return a pointer to a cell that is
no longer visible on screen

You can then customize its contents based on the row it
represents; it will then be displayed with the new content

A table with 1000s of rows may only have 10 cells allocated!

© Kenneth M. Anderson, 2011 58

Standard approach to Table creation

This approach of implementing a table by implementing
“data source” methods is standard across many UI
frameworks

Rather than create a table, you create its data source

The table asks you: “how many sections do I have” or
“how many rows are in section 1” or “what cell should I
display for row 6”

and you give it the answers

This is delegation at work… no need to subclass UITable

© Kenneth M. Anderson, 2011 59

Step 4: Handle a Selection

Next we need to handle the selection of a name in the table

We implement the method
tableView:didSelectRowAtIndexPath:

We are told the selected row

We use that to retrieve the image name

We append “.jpg” to the name and pass that modified
name to the detail view by calling setDetailItem: on the
detailViewController

© Kenneth M. Anderson, 2011

Step 5: Update the Image View

When the detail item has been updated, a customer
“setter” is invoked on detail view controller

In that setter, we call configureView and in that
method, we can set the desired image on the image view
in the same way we did in Image Switcher

And with that we are done, the default template
automatically takes care of creating, showing and hiding
the pop-up control based on changes in orientation

60

© Kenneth M. Anderson, 2011

Wrapping Up (I)

Learned the fundamentals of view controllers

View-based Application template

Window-based Application template

Creating views and view controllers programmatically

Switching between view controllers

Discussed autorelease, @selector

Saw new widgets: UIImageView, UIPageControl

61

© Kenneth M. Anderson, 2011

Wrapping Up (II)

New View Controllers

UISplitViewController, UITableViewController

Gesture Recognition

Animation Support

Allocation Tracking with Instruments

62

© Kenneth M. Anderson, 2011

Coming Up Next

Lecture 18: Review of Midterm

Homework 5 Assigned on Friday

Lecture 19: Advanced Android

Lecture 20: Advanced iOS

or

Lecture 18: Advanced Android

Lecture 19: Review of Midterm (we’ll see!)

63

