INTERMEDIATE

CSCl4448/5448: OBJECT-ORIENTED ANALYSIS &

© Kenneth M. Anderson, 201 |

ON

DESIGN
LECTURE | / — [0/18/201 |

Goals of the Lecture

® [ecarn more about 1IOS

® |n particular, focusing on the concept of views and their
assoclated view controllers

® But also covering: autorelease, @selector, the use of
Instruments to track allocations, gesture recognizers,
animation, split view controllers & table view

controllers!

© Kenneth M. Anderson, 201 |)

OS5 Fundamentals (I)

® Fach 10S application has
® one application delegate
® one window
® one or more view controllers

® cach view controller has one view that typically has
many sub-views arranged In a tree structure

® c.g. views contain panels contain lists contain items. ..

© Kenneth M. Anderson, 201 | 3

OS5 Application Architecture

UlApplication UlApplicationDelegate

sharedApplication() delegate

window

rootViewController
UlViewController

Data structures

_ and resources

not shown

© Kenneth M. Anderson, 201 | 4

1OS Fundamentals (I1)

® A window will have a “root’” view controller

® Some view controllers allow us to “push™ a new view
controller onto a stack (similar to Android’s activity
stack)

® the new view controller's view Is then displayed

® When we “pop’ that view controller off the
stack, we return to the view of the previous view
controller

© Kenneth M. Anderson, 201 | 5

OS5 Fundamentals (lI1)

® At other times, we may switch the “root” view
controller entirely

® the new view Is displayed and the previous view
controller (and its view) Is deallocated

© Kenneth M. Anderson, 201 | 6

OS Fundamentals (1V)

® View controllers can be instantiated and activated via the

use of xib files (as we saw In Lecture |3) or they can be
created programmatically

® T[hey, In turn, can create their view through the use of
a Xib file or create their view programmatically

® Vel see examples of both in this lecture

© Kenneth M. Anderson, 201 | i

OS Fundamentals (1V)

® View controllers are very powerful
® they handle the creation of views

® they handle navigation among views and other view
controllers

® they help free up memory when a view Is no longer
being displayed

® they handle the rotation of views when a device's
orientation changes

© Kenneth M. Anderson, 201 | 8

SImple View-Based Application

® Image Switcher
® View-Based Application Template
® [wo Image views
® One page controller

® [he two image views will work with the page
controller to make 1t look like multiple images are
avallable to display

© Kenneth M. Anderson, 201 | 9

A
l
% :. .

Framework from Slide 4 Wit Large

- (B)appllcatlon (1 ‘.;,‘;t“ *)application didFinishLaunchlngwlthOptlons (N tionary *)launchOptions {
- y = [[[jow alloc] initWithFrame: [[UIScreen mainScreen] oounds]] aut orclnasc]
= [[[alloc] initWithNibName:@"ViewCor Ller" bundle:] autorelease];

. makeKeyArdesxole]

Take a look at the default launch code in AppDelegate.m
The app delegate has a reference to a window (by creating
one); it creates a view controller and assigns it as the

window’s rootViewController.

The View Controller’s View is created with the .xib file loads

© Kenneth M. Anderson, 201 | 10

Step |

~dit View Controller's XIB File

® [Cdt ViewController.xib

® Change the view's background to black

® Add two image views and one page controller

® one image view directly on top of the other

® the page controller should be “on top™ of the two image
views; It should be configured to have 5 pages

® tag the image views as "0 and | " (using attributes pane)

® Use the outline view of the dock to select the views

© Kenneth M. Anderson, 201 | | |

Step 2: Generate outlets

® XCode can
® auto-generate properties in the view controller
® and

® generate the connections between the properties in
the .h file and the widgets Iin the xib file

® [nable the assistant editor by clicking the tuxedo icon

}
.—

® [hen control drag from the .xib to the .h

® XCode automatically picks the right .h file

© Kenneth M. Anderson, 201 | |2

Step 2: Continued

® \When prompted name the outlets
® imageOne (tag: 0), mage Iwo (tag: |), pages
® Switch to ViewControllerm
® You will see that XCode automatically
® added an @synthesize for each property

® added statements to dealloc and viewDidUnload to
take care of releasing the properties at the
appropriate time

© Kenneth M. Anderson, 201 | |3

Step 2: Continued

® Jo follow the guidelines | outlined In the previous lecture, we
will want to

® add a name for the instance variable
® @synthesize pages = _pages;
® update viewDidlLoad to use properties
® self.pages = nlil;
® update dealloc to use the new Instance variable name

® [pages release];

© Kenneth M. Anderson, 201 | | 4

Step 3: Add Images

® You can do this via Drag and Drop or
Project = Add to Project...

® Jell XCode to copy the files

® You want the images to end up In the
Resources folder of the project view

® 50 select all the image files, right
click, and select “New Group from

selection”

® Rename group to “Resources”

© Kenneth M. Anderson, 201 |

™ ImageSwitcher
Classes

Other Sources

Resources

B Aragorn.jpg
B Colum.jpg

B Legolas.ipg
B sauron.jpg

B theTowers.jpg
F] ImageSwitcherViewCg
| MainWindow.xib

2| ImageSwitcher-Info.p

Step 4: Write the Code

® \We need to write code for two methods

® The first 1s viewDidLoad; This is a view controller
method that gets invoked just after it has created its
view and just before that view gets displayed

® [his is your opportunity to Initialize the view

® [he second is pageTurnings; this is a method we
will create ourselves; we'll tell the page control to call
this method when the user asks it to turn the page

© Kenneth M. Anderson, 201 | | 6

viewDidlLoad (1)

® |n this method, we will
® ask one image view to load an image
® cach image loaded will be cached automatically
® hide the other image view
® set up our variables “front” and “back”

® tell the page control which method to invoke

© Kenneth M. Anderson, 201 | |7

viewDidLoad (ll)

- (void)viewDidLoad {
[super viewDidlLoad];

1magelne. 1mage

Nt = self

8 Al

N '1’.\: ',-";-.
d 4 -
L Y
‘-l - ‘I - ' - "5 . .
-3 N - s Al s | ¥y

gelOne setHidden:NO):
jeTwo setHidden:YES]:

)es addTarget:self
action:@selector(pageTurning:)
forControlEvents:UIControlEventValueChanged];

© Kenneth M. Anderson, 201 |

WAIT A MINU TE!!

® self.front! self.back! @selector(page Turning:)
® Where are these defined?
® [he answer:nowhere... vet!

® [hese two properties and the method will
® help us swap between images, and

® serve as the event handler when the page control Is
clicked

© Kenneth M. Anderson, 201 | 19

Where do we put them!?

® [hey are thus features of the view controller that are not
public; we want access to them in the .m file but we don't
want other classes to know about them

® Solution: Objective-C 2.0 Class Extensions

® A class extension allows us to reopen the class

definition and add additional features that are only
visible to the .m file

® |f you define properties in the class extension, you still
have to @synthesize them in the @mplementation section

© Kenneth M. Anderson, 201 | 20

Syntax of Class

-xtension

® @interface ClassName ()

® <property and method defs go here>

® @end

wlont

Don't forget
to synthesize
the front and gpropert)
back aproperty
properties!

1]]
\]]

(
(r

void) pageTurning:

troller.h

()

mic, assign) UIImageV
mic, assign) UIImageV

© Kenneth M. Anderson, 201 |

1ewx front;
Lewk back:

(UIPageControlx) sender;

2|

Back to viewDidlLoad (lIf)

- (void)viewDidLoad {
[super viewDidlLoad];

f. 1mageOne. 1mage

Nt = self

~— . 8 Al

q r -
g - —_ ‘-l - ‘I - o= Tals | ¥ al
d \ I — r - e Al FAFLEEE R LAY]

gelOne setHidden:NO):
jeTwo setHidden:YES]:

)es addTarget:self
action:@selector(pageTurning:)
forControlEvents:UIControlEventValueChanged];

© Kenneth M. Anderson, 201 |

Discussion of Code (1)

® Having defined and synthesized the front and back
properties, we can see that

® they simply point at the image views and keep track of
which one is visible (front) and which one Is invisible

© Kenneth M. Anderson, 201 | 23

Discussion of Code (ll)

® Having declared the page lurning: method, we can see that
the last thing viewDidlL.oad does Is connect the

UlPageControl to the page Turning: method

® [he method call

addTarget:action:forControlEvents: is
invoked on self.pages (the UlPageControl)

® [t (essentially) says:

® when your value changes invoke page lurning: on
“selt” which 1s our ViewController object

This is equivalent to control dragging from the widget to the event

hander in the XIB Editor © Kenneth M. Anderson, 201 | 24

Discussion of Code (Il

® Note the use of

® @selector(pageTurning:)
® to reference the method that needs to be invoked
® LEvery method is given an i1d at run-time

® @selector(method name) returns that 1d and
allows 1t to be invoked dynamically

© Kenneth M. Anderson, 201 | 25

Step 5: Implement switching images

® VWe will make sure we can change the images first
® [hen we'll add animation
® VWe will ask the page control which page we are turning to

® Welll then load the appropriate image into the
background image view and

® swap the visibilities of the two image views and

® update our pointers

© Kenneth M. Anderson, 201 | 26

- (void) pageTurning: (UIPageControlx) sender {
NSInteger nextPage = [sender currentPage];
switch (nextPage) {

case 0:
self.back.image
break;

case 1:
self.back.image
break;

case 2:
self.back.1image
preak;

case 3:
self.back.image
break;

case 4.
self.back.image
break;

default:
break;

[UIImage imageNamed:@"Aragorn.jpqg"];

[UIImage imageNamed:@"Gollum.jpg"];

[UIImage imageNamed:@'"lLegolas.jpg"];

[UIImage imageNamed:@'Sauron.jpg"];

[UIImage imageNamed:@"theTowers.jpg"];

}

[self.front setHidden:YES];
[self.back setHidden:NO];

if (self.front.tag == 0) {

self.front = self.imageTwo;
self.back = self.imageOne;
} else {

self.front = self.1imageOne;
self.back = self.1imageTwo;

© Kenneth M. Anderson, 201 |

Step /: Add the animation

® Vel add a simple flip animation when we turn between
pages

® [he style of animation that we will use is very similar to
the "tweening” animation we saw for Android

® T[he only difference Is that 10S animations are specified
programmatically using Core Animation rather than
using resources as we did in Android

© Kenneth M. Anderson, 201 | 28

Skinning the Cat

® J[here are many ways to do animations in 105

® We will use the new “block-style™ animations
introduced In 105 4

® But first, in order to do this right, we'll need to keep track
of which page we are on and then determine if we need
to flip left or right

® We'll add an integer property called current to keep
track of the current page

© Kenneth M. Anderson, 201 | 29

UIViewAnimationOptions options;

if (self.current < nextPage) {
options = UIViewAnimationOptionTransitionFlipFromLeft;

} else {
options = UIViewAnimationOptionTransitionFlipFromRight;
}

[UIView transitionWithView:self.view
duration:1.0
options:options
animations:~{
[self.front setHidden:YES];
[self.back setHidden:NO]:

}
completion:~(BOOL finished) {
if (finished) {
UIImageView *temp = self.front;
self.front = self.back;
self.back = temp;

self.current = nextPage;

© Kenneth M. Anderson, 201 |

Step 8: Add Gesture Recognition

® Sometimes it's hard to click on the page control just right

® [t's more natural on a touch device to just swipe
between Images

® OS makes It easy to detect a swipe gesture using Its
gesture recognizers

© Kenneth M. Anderson, 201 | 31

Game Plan

® First, we'll instantiate gesture recognizers in viewDidlLoad:
and add them to our root view

® Our image views don't handle user input, so all touches
and swipes will be directed to the root view of the
view controller

® Second, we'll configsure the gesture recognizers to call a
method called handleSwipe:

® We'll add handleSwipe to our class extension

© Kenneth M. Anderson, 201 | 32

Image Switcher Wrap Up

® Here we had a single view with three subviews

® With some trickery, we made it look like our application
had five Images

® with only one ever being displayed at a time
® We needed two image controls to enable the animation

® T[he 5 images are cached (only loaded once); Ullmage
s able to detect low memory situations and empty Its
cache as needed

© Kenneth M. Anderson, 201 | 33

°rogrammatic View Creation

® 50 far we have created views only via XIB files

® Occasionally, you will be In situations where you need
to create a view programmatically

® Jo do this, you create a View Controller with no
assoclated XIB file and then create the contents of your
view In viewDidLoad,;

® View Controllers also have a method called

loadView: [cave it alone, its default behavior does
just what we need

© Kenneth M. Anderson, 201 | 34

View Switcher

® |ets create an application with three view controllers

® Each view controller will programmatically create a
view that contains a label and 2 buttons

® [he label will state which screen we are looking at
® [he buttons will take us to the other screens

® [o switch among the views, we will install the
appropriate view controller as the application window's
root view controller

© Kenneth M. Anderson, 201 | 35

Step |: Create Window-Based 105
Application

® Call itView Switcher

® [his template contains only a single window and a
single app delegate

® No view or view controller is created by default

® Our window has a white background by default, so
that's what we see If we run the default project

® Each screen will have a different color (red, green, blue)
to distinguish our views from the window

© Kenneth M. Anderson, 201 | 36

Step 2: Create Screen One

® Select the Classes Folder and then invoke 8=N to bring
up the New File dialog

® |ndicate that you want an Objective-C class that Is a
subclass of NSObject; name it ScreenOne

® Now change its supertype to be UlViewController

® [he default template of UlViewController contains a
lot of code that can be confusing

® better to start with NSObject’s clean template

© Kenneth M. Anderson, 201 | 37

Step 3: Create Label and Buttons

® At a high-level, we will
® override the viewDidLoad method to

® programmatically create a Screen One label and
“Go To Screen Two' and “Go To Screen Three”
buttons

® set the background to a nice shade of red

® Jake a look at the source code for detalls

© Kenneth M. Anderson, 201 | 38

Step 4: Arrange Screen One
Creation

® Now that we have created the ScreenOne view controller;
we need to arrange for an instance of It to be created

® o do this, we will override a method in our application
delegate,

application:didFinishLaunchingWithOptions:

® This method gets called after the application has
launched but before the application’'s window appears

® We need to import ScreenOne.h, instantiate an
instance and set It as the root view controller

© Kenneth M. Anderson, 201 | 39

Step D: Create Screen Iwo and Three

® [hese classes will be exactly the same as ScreenOne

except for label/button names and the background color
of the view

® See example code for detalls

© Kenneth M. Anderson, 201 | 40

Step 6: Wire up the Buttons

® Since we are not using Interface Builder to create our
views, we have to wire our buttons to their event handlers
programmatically

® Just like we did with the UlPageController in the
previous example

® See sample code for details

® Now, we need to implement the button event handlers

© Kenneth M. Anderson, 201 | 4|

Switching the root view controller (1)

® Our button event handler has to do the following
® Get a handle to the app delegate
® Use the app delegate to get a handle to our window
® |nstantiate an instance of the new view controller

® Autorelease the new view controller (hold that
thought)

® Set the new view controller as the root view controller

© Kenneth M. Anderson, 201 | 42

- (void) goToScreenTwo: (UIButtonk) sender {

'tex delegate = (AppDeleg *) [UIApplication sharedApplication].delegate;

Jox screenTwo = [[Scr 0 alloc] initWithNibName:nil bundle:nil];
[screenTwo autorelease]:

delegate.window. rootViewController = screenTwo;

© Kenneth M. Anderson, 201 | 43

autorelease! (1)

® \We have finally seen a situation that requires autorelease

® T[his method Is one of the memory management
routines; here Is why we need 1t

® |f we don't use It, then
® we create an instance of the view controller
® retain count defaults to |
® we then pass it to the window, which retains it

® retain count incremented to 2

© Kenneth M. Anderson, 201 | 44

autorelease! (II)

® And then?

® We never see that object again and so we are unable
to release It

® VWhen we finally set a new root view controller, the

previous root controller gets released and now Its
retain count returns to |

® which means It never goes away: memory leak!

© Kenneth M. Anderson, 201 | 45

autorelease! ()

® 50, the question becomes how do we release the view
controller after we create It, so that eventually its retain
count will go to zero

® \We can't release it before we pass it to window

® [f we do, Its count goes to zero Immediately and it gets
deallocated and we end up passing a deallocated
object to the window

® SO0, we autorelease It

© Kenneth M. Anderson, 201 | 46

autorelease! (V)

® \When you autorelease the view controller

® |t gets added to the current autorelease pool, which is
automatically created before the event handler Is called

® |t gets passed to the window: retain count ==

® T[he event handler ends and the pool is flushed; VWhen
the pool Is flushedq, it releases all of the objects within It;
retain count ==

® When the root view controller 1s updated, the
previous root controller is released and deallocated

© Kenneth M. Anderson, 201 | 47

Iracking Memory

® \We can run our app In a program called Instruments
which allows us to track allocations (among other things)

® Ve can then verify that our view controllers are being
deallocated

® We can then be confident that only one view
controller is ever allocated in the ViewSwitcher
application

® Demo

© Kenneth M. Anderson, 201 | 48

Split View Controller

® [ets take a look at a more complicated example

® A SplitView Controller was added when the IPad came out
to make It easy for an application to

have a list of items on the left

and a detail viewing space on the right

when an item in the list Is selectedq, its detalls are displayed

the items are shown in a table when In landscape mode
and in a pop-up list when In portrait mode

© Kenneth M. Anderson, 201 | 49

SplitView Template

® [he default template for a split view application is
configured, like all other templates, to work right away

® [t displays a simple list of items “row |, row 2, etc.” and a
detaill view containing a label

® when a row Is selected, the label updates

® (see next slide)

© Kenneth M. Anderson, 201 | 50

Carrier = 11:13 PM 100 % (=)

Root View Controller

Row 0

Row 1

© Kenneth M. Anderson, 201 |

Image Switcher Lives Again

® |ets explore the split-view template by recreating image switcher for
the 1Pad; Create a Split View-based application and call it SplitViewer

® T[his template comes with
® A split view controller created in MainWindow.xib
® [wo view controllers: root and detall
® root is a subclass of Ul'TableViewController

® detal 1s a UlViewController that implements two
interfaces: UISplitViewControllerDelegate and
UlPopoverControllerDelegate

© Kenneth M. Anderson, 201 | 5

Step One: Copy Images

® Drag and Drop the images from Image Switcher into the
Resources folder of Split Viewer and copy them across

® |t's important that you drag and drop the images into
the resources folder contained within the XCode
window

® |f you copy the images to the SplitViewer folder in
the Finder without copying them into the project,
XCode won't be able to find them

© Kenneth M. Anderson, 201 | 53

Step 2: Prepare the Detall View

® \WVe need to delete the label that Is iIncluded In
DetailView.xib by default

® Replace it with an image view

® (Center the iImage, make It big, set Its autosize
constraints, etc.

® Save your changes, add an outlet/property in the .h file
and synthesize the property in the .m file

® Go back to IB and connect the UllmageView to the
property

© Kenneth M. Anderson, 201 | 54

Step 3: Init array of image names

® |n the viewDidLoad method of the root view
controller, we will create an array of image names

® We will then use this array to populate the table

® VWe will also set the title of the navigation bar to “Lord of
the Rings”

© Kenneth M. Anderson, 201 | 55

Yopulating a lable

® J[o populate a table, you implement three methods
® numberOfSectionsinTableView:
® return |
® tableView:numberOfRowslnSection:
® return the size of the array
® tableView:cellForRowAtindexPath:

® Very powertul, slightly complex code (see next slide)

© Kenneth M. Anderson, 201 | 56

- (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath {

static NSString *Cellldentifier = @"Cellldentifier”;

// Dequeue or create a cell of the appropriate type.
UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:Cellldentifier];
if (cell == nil) {

cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseldentifier:Cellldentifier] autorelease];
cell.accessoryType = UITableViewCellAccessoryNone;

}

// Configure the cell.

[[cell textlLabel] setText:[images objectAtIndex:[indexPath row]]];
return cell;

© Kenneth M. Anderson, 201 | 5/

Standard approach to lable creation

® [his approach of implementing a table by implementing
“data source’” methods Is standard across many Ul
frameworks

® Rather than create a table, you create its data source

® [he table asks you:"how many sections do | have” or
“how many rows are in section | or “what cell should |
display for row 6"

® and you give 1t the answers

® [hisis delegation at work... no need to subclass Ul'Table

© Kenneth M. Anderson, 201 | 58

Step 4: Handle a Selection

® Next we need to handle the selection of a name in the table

® We implement the method
tableView:didSelectRowAtindexPath:

® \We are told the selected row
® We use that to retrieve the image name

® We append " pg’ to the name and pass that modified
name to the detall view by calling setDetallltem: on the
detallViewController

© Kenneth M. Anderson, 201 | 59

Step 5: Update the Image View

® \When the detall item has been updated, a customer
‘setter’ Is invoked on detall view controller

® |n that setter; we call configureView and in that
method, we can set the desired image on the image view
in the same way we did in Image Switcher

® And with that we are done, the default template
automatically takes care of creating, showing and hiding
the pop-up control based on changes in orientation

© Kenneth M. Anderson, 201 | 60

Wrapping Up (1)

® [earned the fundamentals of view controllers
® View-based Application template
® Window-based Application template
® Creating views and view controllers programmatically
® Switching between view controllers
® Discussed autorelease, @selector

® Saw new widgets: UllmageView, UlPageControl

© Kenneth M. Anderson, 201 | 6|

Wrapping Up (Il

® New View Controllers
s UlSplitViewController, Ul TableViewController
® Gesture Recognition

® Animation Support

® Allocation Tracking with Instruments

© Kenneth M. Anderson, 201 | 62

Coming Up Next

® |ecture |38: Review of Midterm
® Homework 5 Assigned on Friday
® [ecture |9: Advanced Android
® |ecture 20: Advanced IOS

® or
® |ecture |8: Advanced Android

® [ecture |9:Review of Midterm (we'll seel)

© Kenneth M. Anderson, 201 | 63

