
© Kenneth M. Anderson, 2011

DESIGN PATTERNS
CSCI 4448/5448: OBJECT-ORIENTED ANALYSIS & DESIGN

LECTURE 6 — 09/08/2011

1

© Kenneth M. Anderson, 2011

Goals of the Lecture

Introduce the concept of design patterns

Explain how it arose from the field of architecture and
anthropology

Discuss why design patterns are important and what
advantages they provide

Present an example of one design pattern

We saw an example of another design pattern—
Delegation—in Lecture 4 and how it is used in iOS

2

© Kenneth M. Anderson, 2011

Design Patterns are Everywhere (I)

In 1995, a book was published by the “Gang of Four”
called Design Patterns

It applied the concept of patterns (discussed next) to
software design and described 23 of them

The authors did not invent these patterns

Instead, they included patterns they found in at
least 3 “real” software systems.

3

© Kenneth M. Anderson, 2011

Design Patterns are Everywhere (II)

Since that time lots of DP books have been published

and more patterns have been cataloged

although many pattern authors abandoned the criteria
of having to find the pattern in 3 shipping systems

Unfortunately, many people feel like they should become
experts in OO A&D before they learn about patterns

our book takes a different stance: learning about design
patterns will help you become an expert in OO A&D

4

© Kenneth M. Anderson, 2011

Cultural Anthropology

Design Patterns have their intellectual roots in the discipline
of cultural anthropology

Within a culture, individuals will agree on what is
considered good design

“Cultures make judgements on good design that
transcend individual beliefs”

Patterns (structures and relationships that appear over
and over again in many different well designed objects)
provide an objective basis for judging design

5

© Kenneth M. Anderson, 2011

Christopher Alexander (I)

Design patterns in software design traces its intellectual roots
to work performed in the 1970s by an architect named
Christopher Alexander

His 1979 book called “The Timeless Way of Building” that
asks the question “Is quality objective?”

in particular, “What makes us know when an
architectural design is good? Is there an objective basis
for such a judgement?”

His answer was “yes” that it was possible to objectively
define “high quality” or “beautiful” buildings

6

© Kenneth M. Anderson, 2011

Christopher Alexander (II)

He studied the problem of identifying what makes a good
architectural design by observing all sorts of built
structures

buildings, towns, streets, homes, community centers, etc.

When he found an example of a high quality design, he
would compare that object to other objects of high quality
and look for commonalties

especially if both objects were used to solve the same
type of problem

7

© Kenneth M. Anderson, 2011

Christopher Alexander (III)

By studying high quality structures that solve
similar problems, he could discover similarities
between the designs and these similarities where what he
called patterns

“Each pattern describes a problem which occurs over and
over again in our environment and then describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice.”

The pattern provides an approach that can be used to
achieve a high quality solution to its problem

8

© Kenneth M. Anderson, 2011

Four Elements of a Pattern

Alexander identified four elements to describe a pattern

The name of the pattern

The purpose of the pattern: what problem it solves

How to solve the problem

The constraints we have to consider in our solution

He also felt that multiple patterns applied together can
help to solve complex architectural problems

9

© Kenneth M. Anderson, 2011

Design Patterns and Software (I)

Work on design patterns got started when people asked

Are there problems in software that occur all the time
that can be solved in somewhat the same manner?

Was it possible to design software in terms of patterns?

Many people felt the answer to these questions was “yes”
and this initial work eventually influenced the creation of
the Design Patterns book by the Gang of Four

It catalogued 23 patterns: successful solutions to
common problems that occur in software design

10

© Kenneth M. Anderson, 2011

Design Patterns and Software (II)

Design patterns, then, assert that the quality of software
systems can be measured objectively

What is present in a good quality design (X’s) that is
not present in a poor quality design?

What is present in a poor quality design (Y’s) that is
not present in a good quality design?

We would then want to maximize the X’s while
minimizing the Y’s in our own designs

11

© Kenneth M. Anderson, 2011

Key Features of a Pattern

Name

Intent: The purpose of
the pattern

Problem: What problem
does it solve?

Solution: The approach
to take to solve the
problem

Participants: The entities
involved in the pattern

Consequences: The effect
the pattern has on your
system

Implementation: Example
ways to implement the
pattern

Structure: Class Diagram

12

© Kenneth M. Anderson, 2011

Why Study Design Patterns? (I)
Patterns let us

reuse solutions that have worked in the past; why
waste time reinventing the wheel?

have a shared vocabulary around software design

they allow you to tell a fellow software engineer “I used a
Strategy pattern here to allow the algorithm used to
compute this calculation to be customizable”

You don’t have to waste time explaining what you mean
since you both know the Strategy pattern

13

© Kenneth M. Anderson, 2011

Why Study Design Patterns? (II)

Design patterns provide you not with code reuse but
with experience reuse

Knowing concepts such as abstraction, inheritance
and polymorphism will NOT make you a good
designer, unless you use those concepts to create
flexible designs that are maintainable and
that can cope with change

Design patterns can show you how to apply those
concepts to achieve those goals

14

© Kenneth M. Anderson, 2011

A Sense of Perspective

Design Patterns give you a higher-level perspective on

the problems that come up in OO A&D work

the process of design itself

the use of object orientation to solve problems

You’ll be able to think more abstractly and not get bogged
down in implementation details too early in the process

15

© Kenneth M. Anderson, 2011

The Carpenter Analogy (I)

The book has an excellent example of what they mean by
a “higher-level perspective” by talking about two
carpenters having a conversation

They can either say

Should we use a dovetail joint or a miter joint?

or

Should I make the joint by cutting down into the
wood and then going back up 45 degrees and…

16

© Kenneth M. Anderson, 2011

The Carpenter Analogy (II)

The former is at a high-level and enables a richer conversation
about the problem at hand

The latter gets bogged down in the details of cutting the
wood such that you don’t know what problem is being solved

The former relies on the carpenter’s shared knowledge

They know that dovetail joints are higher quality than miter
joints but with higher costs

Knowing that, they can debate whether the higher quality is
needed in the situation they are in

17

© Kenneth M. Anderson, 2011

The Carpenter Analogy in Software

“I have this one object with some important information
and these other objects over here need to know when its
information changes. These other objects come and go. I’m
thinking I should separate out the notification and client
registration functionality from the functionality of the object
and just let it focus on storing and manipulating its
information. Do you agree?”

vs.

“I’m thinking of using the Observer pattern. Do you agree?”

18

© Kenneth M. Anderson, 2011

Other Advantages (I)

Improved Motivation of Individual Learning in Team
Environments

Junior developers see that the design patterns
discussed by more senior developers are valuable and
are motivated to learn them

Improved maintainability

Many design patterns make systems easy to extend,
leading to increased maintainability

19

© Kenneth M. Anderson, 2011

Other Advantages (II)

Design patterns lead to a deeper understanding of core OO
principles

They reinforce useful design heuristics such as

code to an interface

favor delegation over inheritance

find what varies and encapsulate it

Since they favor delegation, they help you avoid the creation
of large inheritance hierarchies, reducing complexity

20

Design Pattern by Example

• SimUDuck: a “duck pond simulator” that can show a wide variety of duck
species swimming and quacking

• Initial State

• But a request has arrived to allow ducks to also fly. (We need to stay
ahead of the competition!)

quack()
swim()
display()

Duck

display()
MallardDuck

display()
RedheadDuck

21

Easy

quack()
swim()
display()

Duck

display()
MallardDuck

display()
RedheadDuck

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

Code Reuse via Inheritance

Add fly() to Duck; all ducks can now fly

22

Whoops!

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

quack()
display()

RubberDuck

Rubber ducks do not fly! They
don’t quack either, so we had
previously overridden quack() to
make them squeak.

We could override fly() in
RubberDuck to make it do
nothing, but that’s less than
ideal, especially...

23

Double Whoops!

quack()
swim()
display()
fly()

Duck

display()
MallardDuck

display()
RedheadDuck

display()
quack()
fly()

RubberDuck
display()
quack()
fly()

DecoyDuck

…when we might always find other Duck subclasses that would
have to do the same thing.

What was supposed to be a good instance of reuse via
inheritance has turned into a maintenance headache!

24

What about an Interface?

swim()
display()

Duck

display()
fly()
quack()

MallardDuck
display()
fly()
quack()

RedheadDuck
display()
quack()

RubberDuck
display()
DecoyDuck

fly()

Flyable
«Interface»

quack()

Quackable
«Interface»

Here we define two
interfaces and allow
subclasses to implement
the interfaces they need.

What are the trade-offs?
25

Design Trade-Offs

• With inheritance, we get

• code reuse, only one fly() and quack() method vs. multiple (pro)

• common behavior in root class, not so common after all (con)

• With interfaces, we get

• specificity: only those subclasses that need a fly() method get it (pro)

• no code re-use: since interfaces only define signatures (con)

• Use of abstract base class over an interface? Could do it, but only in
languages that support multiple inheritance

• In this approach, you implement Flyable and Quackable as abstract base
classes and then have Duck subclasses use multiple inheritance

26

OO Principles to the Rescue!

• Encapsulate What Varies
• For this particular problem, the “what varies” is the behaviors between

Duck subclasses
• We need to pull out behaviors that vary across subclasses and put

them in their own classes (i.e. encapsulate them)
• The result: fewer unintended consequences from code changes (such as

when we added fly() to Duck) and more flexible code

27

Basic Idea

• Take any behavior that varies across Duck subclasses and pull them out of
Duck
• Duck’s will no longer have fly() and quack() methods directly
• Create two sets of classes, one that implements fly behaviors and one that

implements quack behaviors
• Code to an Interface

• We’ll make use of the “code to an interface” principle and make sure that
each member of the two sets implements a particular interface
• For QuackBehavior, we’ll have Quack, Squeak, Silence
• For FlyBehavior, we’ll have FlyWithWings, CantFly, FlyWhenThrown, …

• Additional benefits
• Other classes can gain access to these behaviors (if that makes sense)

and we can add additional behaviors without impacting other classes

28

“Code to Interface” Does NOT Imply Java Interface

• We are overloading the word “interface” when we say “code to an interface”

• We can implement “code to an interface” by defining a Java interface and
then have various classes implement that interface

• Or, we can “code to a supertype” and instead define an abstract base
class which classes can access via inheritance.

• When we say “code to an interface” it implies that the object that is using the
interface will have a variable whose type is the supertype (whether its an
interface or abstract base class) and thus

• can point at any implementation of that supertype

• and is shielded from their specific class names

• A Duck will point to a fly behavior with a variable of type FlyBehavior
NOT FlyWithWings; the code will be more loosely coupled as a result

29

Bringing It All Together: Delegation

• To take advantage of these new behaviors, we must modify Duck to delegate
its flying and quacking behaviors to these other classes

• rather than implementing this behavior internally

• We’ll add two attributes that store the desired behavior and we’ll rename fly()
and quack() to performFly() and performQuack()

• this last step is meant to address the issue of it not making sense for a
DecoyDuck to have methods like fly() and quack() directly as part of its
interface

• Instead, it inherits these methods and plugs-in CantFly and Silence
behaviors to make sure that it does the right thing if those methods are
invoked

• This is an instance of the principle “Favor composition over inheritance”

30

New Class Diagram

FlyBehavior and QuackBehavior define a set of behaviors that provide
behavior to Duck. Duck is composing each set of behaviors and can
switch among them dynamically, if needed. While each subclass now has
a performFly() and performQuack() method, at least the user interface is
uniform and those methods can point to null behaviors when required.

31

swim()
display()
setFlyBehavior()
setQuackBehavior()
performFly()
performQuack()

Duck

display()
MallardDuck

display()
RedheadDuck

display()
RubberDuck

display()
DecoyDuck

fly()
FlyBehavior

quack()
QuackBehavior

FlyWithWings CantFly QuackSilence Squeak

flyBehavior quackBehavior

Duck.java
public abstract class Duck {1

! FlyBehavior flyBehavior;2

! QuackBehavior quackBehavior;3

 4

! public Duck() {5

! }6

 7

! public void setFlyBehavior (FlyBehavior fb) {8

! ! flyBehavior = fb;9

! }10

 11

! public void setQuackBehavior(QuackBehavior qb) {12

! ! quackBehavior = qb;13

! }14

 15

! abstract void display();16

 17

! public void performFly() {18

! ! flyBehavior.fly();19

! }20

 21

! public void performQuack() {22

! ! quackBehavior.quack();23

! }24

 25

! public void swim() {26

! ! System.out.println("All ducks float, even decoys!");27

! }28

}29

30

Note: “code to interface”,
delegation, encapsulation,
and ability to change
behaviors dynamically

32

DuckSimulator.java (Part 1)
Note: all variables
are of type Duck,
not the specific
subtypes; “code to
interface” in action

33

import java.util.LinkedList;1
import java.util.List;2

3
public class DuckSimulator {4

5
 public static void processDucks(List<Duck> ducks) {6
 for (Duck d : ducks) {7
 System.out.println("--");8
 System.out.println("Name: " + d.getClass().getName());9
 d.display();10
 d.performQuack();11
 d.performFly();12
 d.swim();13
 }14
 }15

16
 public static void main(String[] args) {17

18
 List<Duck> ducks = new LinkedList<Duck>();19

20
 Duck model = new ModelDuck();21

22
 ducks.add(new DecoyDuck());23
 ducks.add(new MallardDuck());24
 ducks.add(new RedHeadDuck());25
 ducks.add(new RubberDuck());26
 ducks.add(model);27

28
 processDucks(ducks);29

30
 // change the Model Duck's behavior dynamically31
 model.setFlyBehavior(new FlyRocketPowered());32
 model.setQuackBehavior(new Squeak());33

34
 processDucks(ducks);35
 }36
}37

38

Note: here we see
the power of
delegation. We can
change behaviors
at run-time

DuckSimulator.java (Part 2)

34

import java.util.LinkedList;1
import java.util.List;2

3
public class DuckSimulator {4

5
 public static void processDucks(List<Duck> ducks) {6
 for (Duck d : ducks) {7
 System.out.println("--");8
 System.out.println("Name: " + d.getClass().getName());9
 d.display();10
 d.performQuack();11
 d.performFly();12
 d.swim();13
 }14
 }15

16
 public static void main(String[] args) {17

18
 List<Duck> ducks = new LinkedList<Duck>();19

20
 Duck model = new ModelDuck();21

22
 ducks.add(new DecoyDuck());23
 ducks.add(new MallardDuck());24
 ducks.add(new RedHeadDuck());25
 ducks.add(new RubberDuck());26
 ducks.add(model);27

28
 processDucks(ducks);29

30
 // change the Model Duck's behavior dynamically31
 model.setFlyBehavior(new FlyRocketPowered());32
 model.setQuackBehavior(new Squeak());33

34
 processDucks(ducks);35
 }36
}37

38

Because of abstraction and polymorphism, processDucks()
consists of nice, clean, robust & extensible code!

Not Completely Decoupled

• Is DuckSimulator completely decoupled from the Duck subclasses?

• All of its variables are of type Duck

• No!

• The subclasses are still coded into DuckSimulator

• Duck mallard = new MallardDuck();

• This is a type of coupling… fortunately, we can eliminate this type of coupling
if needed, using a pattern called Factory.

• We’ll see Factory in action later this semester

35

Meet the Strategy Design Pattern

• The solution that we applied to this design problem is known as the Strategy
Design Pattern

• It features the following OO design concepts/principles:

• Encapsulate What Varies

• Code to an Interface

• Delegation

• Favor Composition over Inheritance

• Definition: The Strategy pattern defines a family of algorithms, encapsulates
each one, and makes them interchangeable. Strategy lets the algorithm vary
independently from clients that use it

36

Structure of Strategy

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

Algorithm is pulled out of Client. Client only makes use of the public
interface of Algorithm and is not tied to concrete subclasses.

Client can change its behavior by switching among the various
concrete algorithms

37

© Kenneth M. Anderson, 2011

Wrapping Up

Design Patterns

let us reuse existing, high-quality solutions to commonly
recurring problems

establish a shared vocabulary to improve communication
among teams

as well as raise the level of our engineering discipline

Provide designers with a higher perspective on the
problems that occur within design and how to discuss
them, how to solve them, how to consider trade-offs

38

© Kenneth M. Anderson, 2011

Coming Up Next

Homework 3 Assigned on Friday

Lecture 7: Facade and Adapter

Read Chapters 6 and 7 of the textbook

Homework 3 Due on the following Friday

Lecture 8: Expanding Horizons

Read Chapter 8 of the textbook

39

