
The Evolution of Interfaces

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 30 — 12/10/09

© University of Colorado, 2009

1

Credit where Credit is Due

• Some of the material for this lecture is taken from “Programming in Scala” by
Martin Odersky, Lex Spoon, and Bill Venners

• as such some of this material is copyright © 2007, 2008 Odersky, Spoon
and Venners

• In addition, some material is taken from “Ruby For Rails” by David Black

• as such some of this material is copyright © 2006 Manning Publications

2

Goals for this Lecture

• Examine mechanisms in more recent OO languages for evolving the concept
of “interface”, providing flexibility in specifying the types of an application

• Go (briefly)

• Clojure (briefly)

• Scala

• Ruby

• Wrap up the semester

3

Review: (Lecture 3) Relationships: Interfaces

• A class can indicate that it implements an interface

• An interface is a type of class definition in which only method signatures
are defined

• A class implementing an interface provides method bodies for each defined
method signature in that interface

• This allows a class to play different roles, each role providing a different set
of services

• These roles are then independent of the class’s inheritance
relationships

• Other classes can then access a class via its interface

• This is indicated via a “ball and socket” notation

4

Reminder (Lecture 4): Interface Example

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet-related methods to Animal

• add abstract Pet methods to Animal

• add Pet methods only in the classes they belong (no explicit contract)

• make a separate Pet superclass and have pets inherit from both Pet
and Animal

• make a Pet interface and have only pets implement it

• This often makes the most sense although it hinders code reuse

• Variation: create Pet interface, but then create Pet helper class that
is then composed internally and Pet’s delegate if they want the
default behavior

5

Reminder (Lecture 4): Animals (With Inheritance)

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()

6

Essentially, how
do we make
Dog and Cat be
Pets without
impacting the
rest of the
classes?

Considering the alternatives (I)

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet-related methods to Animal

• This approach is sub-optimal because non-Pet classes receive Pet
behaviors via inheritance; you would be forced to override those
behaviors to raise an exception for non-Pets.

7

Considering the alternatives (II)

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add abstract Pet methods to Animal

• even worse than previous solution!

• every subclass gets Pet methods AND has to implement them

• with the former method, you at least could take advantage of
code reuse

8

Considering the alternatives (III)

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet methods only in the classes they belong (no explicit
contract)

• With this approach (at least in Java and languages similar to it), you
lose the advantage of having a type called Pet

• Instead, your code just has to know that Dog IS-A Pet and that it
can invoke Pet operations on it. It also had to know that Dogs
and Cats can be treated similarly via their shared Pet methods

• But you would get no support for the type system!

• You can’t do this: Pet p = new Dog();

• You can’t do this: Pet[] p = [new Dog(), new Cat(), new Dog()];

9

Considering the alternatives (IV)

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• make a separate Pet superclass and have pets inherit from both
Pet and Animal

• Multiple Inheritance: enough said

10

Considering the alternatives (V)

• Consider modifying the Animal hierarchy to provide operations related to pets
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• make a Pet interface and have only pets implement it

• This often makes the most sense although it hinders code reuse

• Variation: create Pet interface, but then create Pet helper class that
is then composed internally and Pet’s delegate if they want the
default behavior

11

The landscape is evolving...

• New language features are offering additional alternatives to the ones above

• or, in one case, removing the cons associated with one of the alternatives

• Consider the use of “interface” in the Go programming language...

12

The basics of Go (I)

• No explicit support for objects, no type inheritance, no generics, etc.

• To get object-like support, first define a struct

type File struct {
 fd int; // file descriptor number
 name string; // file name at Open time
}

• and create a factory:

func newFile(fd int, name string) *File {
 if fd < 0 {
 return nil
 }
 return &File{fd, name}
}

13

The basics of Go (II)

• To use the factory

var Stdin = newFile(0, “/dev/stdin”);

• The type of Stdin is *File. To define a method that operates on Files do:

func (file *File) Close() os.Error {…}

func (file *File) Read(b []byte) (ret int, err os.Error) {…}

func (file *File) Write(b []byte) (ret int, err os.Error) {…}

• The syntax therefore is:

 func <receiver>? <name>(<params>) (<return types>) <body>

• On to interfaces...

14

Interfaces in Go

• Interfaces are special types in Go that define method signatures

 type reader interface {

 Read(b []byte) (ret int, err os.Error);

 }

• This defines a type name called “reader” and this type name can now be
used anywhere a type name can appear in Go:

• as a receiver, as a parameter, as a return type

• What’s more, an “object” (struct + methods) does not have to declare that it
implements an interface: Instead, if it has all the methods defined by the
interface it automatically matches!

• We can pass a *File to ANY method that accepts a reader as a parameter

• We can invoke any method on *File that says its receiver is a reader

15

Back to Pets

• What this means to our previous example is that Go has eliminated some of
the cons associated with this alternative

• add Pet methods only in the classes they belong (no explicit
contract)

• We can now define a Pet interface that specifies method signatures
associated with Pets

• We can then define methods for Dog and Cat that match the ones in that
interface

• We can then put Dogs and Cats in Pet collections and we can create a
new pet variable that points at a Dog or a Cat

• We get the benefits of interfaces but with no need for a class to specify that it
implements that interface, the compiler simply takes care of it

• Demo (Note: What con is still present in this approach?)

16

Clojure Destructuring (I)

• Go’s approach to interfaces is similar to what is called “duck typing”

• If it walks like a duck and quacks like a duck, it’s probably a duck

• If an object responds to one or two methods of Duck, it’s probably a Duck

• A similar feature (although in reverse) can be seen in clojure

17

(defstruct author :first-name :last-name)1
2

(def erikson (struct author "Steven" "Erikson"))3
4

(defn greet-author-1 [author]5
 (println "Hello," (:first-name author)))6
 7
(greet-author-1 erikson)8

9
(defn greet-author-2 [{fname :first-name}]10
 (println "Hello," fname))11
 12
(greet-author-2 {:last-name "Vinge" :first-name "Vernor"})13

14

Clojure Destructuring (II)

• In greet-author-1, the definition states that a single argument should be
passed in, but it doesn’t say what that argument should be

• This is common in all languages that use dynamic typing; you can let
anything be passed in and won’t find out until run-time whether it will work
or not (this is a feature not a bug!)

• In greet-author-2, the definition states that a single argument should be
passed in, further more it states that it should be a map, and that map should
include the key :first-name

• [{fname :first-name}]

• In essence, this defines an “interface” that says you can pass any map to me
at all (or anything that acts like a map) as long as that map has a :first-name
key

• with this information, the run-time system can be a little smarter and warn
you if you pass a non-map to this function.

18

Scala Traits

• Scala (Scalable Language) has a feature called “traits” that provide flexibility
in how Scala applications define their type hierarchies

• First some basics

• In Scala, the top most type is Any which implements ==, !=, equals,
hashCode, and toString

• It has two subclasses, AnyValue and AnyRef

• Under AnyValue are the “primitive” classes, such as Int, Float, …

• Under AnyRef are “reference” classes, such as String, List, etc.

• Scala has two “bottom types”: Null and Nothing

• Null is a subclass of all “reference” classes

• It allows you to say things like: var myList : List = null;

• Nothing is the “bottom most type” of Scala, it is a subclass of all other
types; it has no values and it is used to handle abnormal termination

19

Nothing type in Scala

• For instance, Scala has a method that looks like this

• def error(m: String): Nothing = throw new RuntimeException(m)

• The return type is Nothing because this method throws an exception and will
likely cause the program to terminate

• Because Nothing is a subclass of all other types, you can write code like this

• def divide(x: Int, y: Int) : Int =

• if (y != 0) x / y else error(“can’t divide by zero”)

• The true branch has an expression that evaluates to Int

• The false branch has an expression that evaluates to Nothing

• but since Nothing is a subtype of Int, the type of the “if” statement is Int,
as required by the return type of the method

• As you can see, Scala’s type system already provides some interesting
features; now let’s look at traits

20

Traits (I)

• Scala Traits are “interfaces on steroids”

• They can be used like Java interfaces and simply define a set of method
signatures; they define a type that can then be referenced and other
classes can declare that they implement that type

• But

• Unlike Java interfaces, traits can define instance variables and method
bodies, when a class extends the trait it gains access to these definitions,
enabling code reuse

• Traits are therefore designed to be mixed into different parts of the class
hierarchy

21

Traits (II)

• Mechanics: Traits are defined like classes but with keyword “trait”
trait Philosophical {
 def philosophize() {
 println(“I consume memory, therefore I am!”)
 }
}

• If a class uses a trait directly, it is mixed in via the extends keyword

class Frog extends Philosophical {
 override def toString = “green”
}

• If a class extends a class AND uses a trait, the trait is mixed in via “with”
class Animal
class Frog extends Animal with Philosophical {
 override def toString = “green”
}

22

Relationships

23

Any

AnyRef

Animal

Frog

Philosophical

IS-A Relationships

path taken by calls
to super

With traits, calls to super are
dynamically bound; since Frog
extended Animal but then mixed
in Philosophical, if it calls
super.equals(), the call first goes
to Philosophical, then to Animal,
then up the tree to Any;

Traits thus interpose themselves
into the hierarchy

Two uses of Traits

24

• Providing rich interfaces via a small number of abstract methods

• A trait will often define a small number of abstract methods that need to be
implemented by a class that uses the trait

• It will then define a larger number of methods in terms of the abstract
methods, providing the class that uses the trait with a “rich interface”

• trait Ordered for instance defines <, >, <=, >= methods in terms of an
abstract “compare” method; a client class implements compare in a
way that makes sense for it and then gets the four methods above for
free

• Providing stackable modifications

• Small traits (one or two methods) that provide services that can be
combined into a set of classes with a range of different behaviors

25

abstract class IntQueue {1
 def get() : Int2
 def put(x : Int)3
}4

5
import scala.collection.mutable.ArrayBuffer6
class BasicIntQueue extends IntQueue {7
 private val buf = new ArrayBuffer[Int]8
 def get() = buf.remove(0)9
 def put(x: Int) { buf += x }10
}11

12
trait Doubling extends IntQueue {13
 abstract override def put(x : Int) {14
 super.put(2 * x)15
 }16
}17

18
trait Incrementing extends IntQueue {19
 abstract override def put(x: Int) {20
 super.put(x + 1)21
 }22
}23

24
trait Filtering extends IntQueue {25
 abstract override def put(x: Int) {26
 if (x >= 0) super.put(x)27
 }28
}29

30

Stackable behavior via Traits

With these definitions, you can
create a doubling, filtering
IntQueue with the following
declaration

val q = (new BasicIntQueue
with Doubling with Filtering)

q.put(-1)
q.put(0)
q.put(1)

q.get() ; returns 0
q.get() ; returns 2

The -1 does not appear in the
queue because it gets filtered
out by the Filtering trait

26

Back to Pets

• Traits in Scala change this alternative:

• make a Pet interface and have only pets implement it

• to:

• make a Pet trait and have only pets extend it

• By making a Pet trait, you could provide default implementations for each of
the Pet methods which individual animals can override if needed

• You don’t lose out on code reuse and you don’t have to go the route of
creating a helper object that each Pet composes and then delegates to

Ruby Modules

• Ruby has a feature that is similar to Scala traits called modules

• modules are simply bundles of constants, instance variables and methods

• modules cannot be instantiated; they have to be mixed into other classes

• However, the class Class is a subclass of class Module

• so, Classes are simply Modules that can be instantiated

• Method lookup is similar to Scala traits

• when a method m is invoked on object o, the search goes
• does o’s class have method m?
• does o’s class mix in a module?

• If yes, does it have method m?
• does o’s superclass have method m?
• does o’s superclass mix in a module? ...

27

If a class mixes in more
than one module, then the
search will look at each
module in reverse order of
how it was included in the
class

Example

28

module Stacklike1
 attr_reader :stack2
 3
 def initialize4
 @stack = Array.new5
 end6
 7
 def add_to_stack(obj)8
 @stack.push(obj)9
 end10
 11
 def take_from_stack12
 @stack.pop13
 end14
end15

16
class Stack17
 include Stacklike18
end19

20
s = Stack.new21

22
s.add_to_stack("item one")23
s.add_to_stack("item two")24
s.add_to_stack("item three")25

26
puts27
puts "Objects currently on the stack:"28
puts29
puts s.stack30
puts31

32
taken = s.take_from_stack33

34
puts "Removed this object: " + taken35
puts36

37
puts "Now on stack:"38
puts39
puts s.stack40

41

To use this code, you can
now say things like

s = Stack.new
s.add_to_stack(“a”)
puts s.take_from_stack()

Stack is an empty class
until it imports the code
from the Stacklike
module

Back to Pets

29

• Modules in Ruby change this alternative:

• make a Pet interface and have only pets implement it

• to:

• make a Pet module and have only pets include it

• By making a Pet module, you can provide default implementations for each of
the Pet methods, which individual animals can override if needed

• You don’t lose out on code reuse and you don’t have to go the route of
creating a helper object that each Pet composes and then delegates to

• Note: UNLIKE Scala traits, Ruby modules do not have a notion of defining
method signatures that are implemented by other classes

Wrapping Up

• What have we learned this semester?

• Fundamental OO concepts, terminology and notations

• OO analysis and design techniques

• OO principles, patterns and life cycles

• Adaptor, Command, Composite, Decorator, Factory, Flyweight, Iterator,
MVC, Observer, Proxy, Singleton, State, Strategy, Template Method

• UML (class, sequence, activity, state, use case)

• Refactoring, Test-driven design

• Solid foundation in becoming not just a programmer but a DESIGNER

• Have a good Winter break!

30

