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Credit where Credit is Due

• Some of the material for this lecture is taken from “Programming in Scala” by 
Martin Odersky, Lex Spoon, and Bill Venners

• as such some of this material is copyright © 2007, 2008 Odersky, Spoon 
and Venners

• In addition, some material is taken from “Ruby For Rails” by David Black

• as such some of this material is copyright © 2006 Manning Publications
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Goals for this Lecture

• Examine mechanisms in more recent OO languages for evolving the concept 
of “interface”, providing flexibility in specifying the types of an application

• Go (briefly)

• Clojure (briefly)

• Scala

• Ruby

• Wrap up the semester
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Review: (Lecture 3) Relationships: Interfaces

• A class can indicate that it implements an interface

• An interface is a type of class definition in which only method signatures 
are defined

• A class implementing an interface provides method bodies for each defined 
method signature in that interface

• This allows a class to play different roles, each role providing a different set 
of services

• These roles are then independent of the class’s inheritance 
relationships

• Other classes can then access a class via its interface

• This is indicated via a “ball and socket” notation
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Reminder (Lecture 4): Interface Example

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet-related methods to Animal

• add abstract Pet methods to Animal

• add Pet methods only in the classes they belong (no explicit contract)

• make a separate Pet superclass and have pets inherit from both Pet 
and Animal

• make a Pet interface and have only pets implement it

• This often makes the most sense although it hinders code reuse

• Variation: create Pet interface, but then create Pet helper class that 
is then composed internally and Pet’s delegate if they want the 
default behavior
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Reminder (Lecture 4): Animals (With Inheritance)

Cat
makeNoise()

Tiger
makeNoise()

Rhino
makeNoise()

Animal
sleep()

Feline
roam()

Canine
roam()

Pachyderm
roam()

Wolf
makeNoise()

Wolf

Dog
makeNoise()

Lion
makeNoise()

Elephant
makeNoise()

Hippo
makeNoise()
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Essentially, how 
do we make 
Dog and Cat be 
Pets without 
impacting the 
rest of the 
classes?



Considering the alternatives (I)

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet-related methods to Animal

• This approach is sub-optimal because non-Pet classes receive Pet 
behaviors via inheritance; you would be forced to override those 
behaviors to raise an exception for non-Pets.
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Considering the alternatives (II)

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add abstract Pet methods to Animal

• even worse than previous solution!

• every subclass gets Pet methods AND has to implement them

• with the former method, you at least could take advantage of 
code reuse
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Considering the alternatives (III)

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• add Pet methods only in the classes they belong (no explicit 
contract)

• With this approach (at least in Java and languages similar to it), you 
lose the advantage of having a type called Pet

• Instead, your code just has to know that Dog IS-A Pet and that it 
can invoke Pet operations on it. It also had to know that Dogs 
and Cats can be treated similarly via their shared Pet methods

• But you would get no support for the type system!

• You can’t do this: Pet p = new Dog();

• You can’t do this: Pet[] p = [new Dog(), new Cat(), new Dog()];
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Considering the alternatives (IV)

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• make a separate Pet superclass and have pets inherit from both 
Pet and Animal

• Multiple Inheritance: enough said
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Considering the alternatives (V)

• Consider modifying the Animal hierarchy to provide operations related to pets 
(e.g. play() or takeForWalk())

• We have several options, all with pros and cons

• make a Pet interface and have only pets implement it

• This often makes the most sense although it hinders code reuse

• Variation: create Pet interface, but then create Pet helper class that 
is then composed internally and Pet’s delegate if they want the 
default behavior
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The landscape is evolving...

• New language features are offering additional alternatives to the ones above

• or, in one case, removing the cons associated with one of the alternatives

• Consider the use of “interface” in the Go programming language...
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The basics of Go (I)

• No explicit support for objects, no type inheritance, no generics, etc.

• To get object-like support, first define a struct

type File struct {
    fd      int;    // file descriptor number
    name    string; // file name at Open time
}

• and create a factory:

func newFile(fd int, name string) *File {
    if fd < 0 {
        return nil
    }
    return &File{fd, name}
}
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The basics of Go (II)

• To use the factory

var Stdin = newFile(0, “/dev/stdin”);

• The type of Stdin is *File. To define a method that operates on Files do:

func (file *File) Close() os.Error {…}

func (file *File) Read(b []byte) (ret int, err os.Error) {…}

func (file *File) Write(b []byte) (ret int, err os.Error) {…}

• The syntax therefore is:

    func <receiver>? <name>(<params>) (<return types>) <body>

• On to interfaces...
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Interfaces in Go

• Interfaces are special types in Go that define method signatures

      type reader interface {

          Read(b []byte) (ret int, err os.Error);

      }

• This defines a type name called “reader” and this type name can now be 
used anywhere a type name can appear in Go:

• as a receiver, as a parameter, as a return type

• What’s more, an “object” (struct + methods) does not have to declare that it 
implements an interface: Instead, if it has all the methods defined by the 
interface it automatically matches!

• We can pass a *File to ANY method that accepts a reader as a parameter

• We can invoke any method on *File that says its receiver is a reader 
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Back to Pets

• What this means to our previous example is that Go has eliminated some of 
the cons associated with this alternative

• add Pet methods only in the classes they belong (no explicit 
contract)

• We can now define a Pet interface that specifies method signatures 
associated with Pets

• We can then define methods for Dog and Cat that match the ones in that 
interface

• We can then put Dogs and Cats in Pet collections and we can create a 
new pet variable that points at a Dog or a Cat

• We get the benefits of interfaces but with no need for a class to specify that it 
implements that interface, the compiler simply takes care of it

• Demo (Note: What con is still present in this approach?)
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Clojure Destructuring (I)

• Go’s approach to interfaces is similar to what is called “duck typing”

• If it walks like a duck and quacks like a duck, it’s probably a duck

• If an object responds to one or two methods of Duck, it’s probably a Duck

• A similar feature (although in reverse) can be seen in clojure

17

(defstruct author :first-name :last-name)1
2

(def erikson (struct author "Steven" "Erikson"))3
4

(defn greet-author-1 [author]5
  (println "Hello," (:first-name author)))6
  7
(greet-author-1 erikson)8

9
(defn greet-author-2 [{fname :first-name}]10
  (println "Hello," fname))11
  12
(greet-author-2 {:last-name "Vinge" :first-name "Vernor"})13
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Clojure Destructuring (II)

• In greet-author-1, the definition states that a single argument should be 
passed in, but it doesn’t say what that argument should be

• This is common in all languages that use dynamic typing; you can let 
anything be passed in and won’t find out until run-time whether it will work 
or not (this is a feature not a bug!)

• In greet-author-2, the definition states that a single argument should be 
passed in, further more it states that it should be a map, and that map should 
include the key :first-name

• [{fname :first-name}]

• In essence, this defines an “interface” that says you can pass any map to me 
at all (or anything that acts like a map) as long as that map has a :first-name 
key

• with this information, the run-time system can be a little smarter and warn 
you if you pass a non-map to this function.
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Scala Traits

• Scala (Scalable Language) has a feature called “traits” that provide flexibility 
in how Scala applications define their type hierarchies

• First some basics

• In Scala, the top most type is Any which implements ==, !=, equals, 
hashCode, and toString

• It has two subclasses, AnyValue and AnyRef

• Under AnyValue are the “primitive” classes, such as Int, Float, …

• Under AnyRef are “reference” classes, such as String, List, etc.

• Scala has two “bottom types”: Null and Nothing

• Null is a subclass of all “reference” classes

• It allows you to say things like: var myList : List = null;

• Nothing is the “bottom most type” of Scala, it is a subclass of all other 
types; it has no values and it is used to handle abnormal termination

19



Nothing type in Scala

• For instance, Scala has a method that looks like this

• def error(m: String): Nothing = throw new RuntimeException(m)

• The return type is Nothing because this method throws an exception and will 
likely cause the program to terminate

• Because Nothing is a subclass of all other types, you can write code like this

• def divide(x: Int, y: Int) : Int =

• if (y != 0) x / y else error(“can’t divide by zero”)

• The true branch has an expression that evaluates to Int

• The false branch has an expression that evaluates to Nothing

• but since Nothing is a subtype of Int, the type of the “if” statement is Int, 
as required by the return type of the method

• As you can see, Scala’s type system already provides some interesting 
features; now let’s look at traits
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Traits (I)

• Scala Traits are “interfaces on steroids”

• They can be used like Java interfaces and simply define a set of method 
signatures; they define a type that can then be referenced and other 
classes can declare that they implement that type

• But

• Unlike Java interfaces, traits can define instance variables and method 
bodies, when a class extends the trait it gains access to these definitions, 
enabling code reuse

• Traits are therefore designed to be mixed into different parts of the class 
hierarchy
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Traits (II)

• Mechanics: Traits are defined like classes but with keyword “trait”
trait Philosophical {
  def philosophize() {
    println(“I consume memory, therefore I am!”)
  }
}

• If a class uses a trait directly, it is mixed in via the extends keyword

class Frog extends Philosophical {
  override def toString = “green”
}

• If a class extends a class AND uses a trait, the trait is mixed in via “with”
class Animal
class Frog extends Animal with Philosophical {
  override def toString = “green”
}

22



Relationships
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Any

AnyRef

Animal

Frog

Philosophical

IS-A Relationships

path taken by calls 
to super

With traits, calls to super are 
dynamically bound; since Frog 
extended Animal but then mixed 
in Philosophical, if it calls 
super.equals(), the call first goes 
to Philosophical, then to Animal, 
then up the tree to Any;

Traits thus interpose themselves 
into the hierarchy



Two uses of Traits
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• Providing rich interfaces via a small number of abstract methods

• A trait will often define a small number of abstract methods that need to be 
implemented by a class that uses the trait

• It will then define a larger number of methods in terms of the abstract 
methods, providing the class that uses the trait with a “rich interface”

• trait Ordered for instance defines <, >, <=, >= methods in terms of an 
abstract “compare” method; a client class implements compare in a 
way that makes sense for it and then gets the four methods above for 
free

• Providing stackable modifications

• Small traits (one or two methods) that provide services that can be 
combined into a set of classes with a range of different behaviors
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abstract class IntQueue {1
  def get() : Int2
  def put(x : Int)3
}4

5
import scala.collection.mutable.ArrayBuffer6
class BasicIntQueue extends IntQueue {7
  private val buf = new ArrayBuffer[Int]8
  def get() = buf.remove(0)9
  def put(x: Int) { buf += x }10
}11

12
trait Doubling extends IntQueue {13
  abstract override def put(x : Int) {14
    super.put(2 * x)15
  }16
}17

18
trait Incrementing extends IntQueue {19
  abstract override def put(x: Int) {20
    super.put(x + 1)21
  }22
}23

24
trait Filtering extends IntQueue {25
  abstract override def put(x: Int) {26
    if (x >= 0) super.put(x)27
  }28
}29

30

Stackable behavior via Traits

With these definitions, you can 
create a doubling, filtering 
IntQueue with the following 
declaration

val q = (new BasicIntQueue 
with Doubling with Filtering)

q.put(-1)
q.put(0)
q.put(1)

q.get() ; returns 0
q.get() ; returns 2

The -1 does not appear in the 
queue because it gets filtered 
out by the Filtering trait
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Back to Pets

• Traits in Scala change this alternative:

• make a Pet interface and have only pets implement it

• to:

• make a Pet trait and have only pets extend it

• By making a Pet trait, you could provide default implementations for each of 
the Pet methods which individual animals can override if needed

• You don’t lose out on code reuse and you don’t have to go the route of 
creating a helper object that each Pet composes and then delegates to



Ruby Modules

• Ruby has a feature that is similar to Scala traits called modules

• modules are simply bundles of constants, instance variables and methods

• modules cannot be instantiated; they have to be mixed into other classes

• However, the class Class is a subclass of class Module

• so, Classes are simply Modules that can be instantiated

• Method lookup is similar to Scala traits

• when a method m is invoked on object o, the search goes
• does o’s class have method m?
• does o’s class mix in a module?

• If yes, does it have method m?
• does o’s superclass have method m?
• does o’s superclass mix in a module? ...
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If a class mixes in more 
than one module, then the 
search will look at each 
module in reverse order of 
how it was included in the 
class



Example
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module Stacklike1
  attr_reader :stack2
  3
  def initialize4
    @stack = Array.new5
  end6
  7
  def add_to_stack(obj)8
    @stack.push(obj)9
  end10
  11
  def take_from_stack12
    @stack.pop13
  end14
end15

16
class Stack17
  include Stacklike18
end19

20
s = Stack.new21

22
s.add_to_stack("item one")23
s.add_to_stack("item two")24
s.add_to_stack("item three")25

26
puts27
puts "Objects currently on the stack:"28
puts29
puts s.stack30
puts31

32
taken = s.take_from_stack33

34
puts "Removed this object: " + taken35
puts36

37
puts "Now on stack:"38
puts39
puts s.stack40

41

To use this code, you can 
now say things like

s = Stack.new
s.add_to_stack(“a”)
puts s.take_from_stack()

Stack is an empty class 
until it imports the code 
from the Stacklike 
module



Back to Pets
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• Modules in Ruby change this alternative:

• make a Pet interface and have only pets implement it

• to:

• make a Pet module and have only pets include it

• By making a Pet module, you can provide default implementations for each of 
the Pet methods, which individual animals can override if needed

• You don’t lose out on code reuse and you don’t have to go the route of 
creating a helper object that each Pet composes and then delegates to

• Note: UNLIKE Scala traits, Ruby modules do not have a notion of defining 
method signatures that are implemented by other classes



Wrapping Up

• What have we learned this semester?

• Fundamental OO concepts, terminology and notations

• OO analysis and design techniques

• OO principles, patterns and life cycles

• Adaptor, Command, Composite, Decorator, Factory, Flyweight, Iterator, 
MVC, Observer, Proxy, Singleton, State, Strategy, Template Method

• UML (class, sequence, activity, state, use case)

• Refactoring, Test-driven design

• Solid foundation in becoming not just a programmer but a DESIGNER

• Have a good Winter break!
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