
Singleton, Command, & Adaptor

Kenneth M. Anderson
University of Colorado, Boulder

CSCI 4448/5448 — Lecture 22 — 11/05/2009

© University of Colorado, 2009

1

Lecture Goals

• Cover Material from Chapters 5 — 7 of the Design Patterns Textbook

• Singleton Pattern

• Command Pattern

• Adaptor Pattern

• Facade Pattern

2

Singleton Pattern: Definition

• The Singleton Pattern ensures a class has only one instance (or a constrained
set of instances), and provides a global point of access to it

• Useful for objects that represent real-world resources, such as printers, in
which you want to instantiate one and only one object to represent each
resource

• Also useful for “management” code, such as a thread/connection pool

• At first, Singleton may seem difficult to achieve… typically, once you define a
class, you can create as many instances as you want

• Foo f = new Foo(); Foo f1 = new Foo(); Foo f2 = new Foo()…

• The key (in most languages) is to limit access to the class’s constructor, such
that only code in the class can invoke a call to the constructor (or initializer or
<insert code that creates instances here>)

• Indeed, as you will see, different languages achieve the Singleton pattern
in different ways

3

Singleton Pattern: Structure

static getInstance() : Singleton
private Singleton()

static my_instance : Singleton
Singleton Singleton involves only a single class (not

typically called Singleton). That class is a
full-fledged class with other attributes
and methods (not shown)

The class has a static variable that points
at a single instance of the class.

The class has a private constructor (to
prevent other code from instantiating the
class) and a static method that provides
access to the single instance

4

World’s Smallest Java-based Singleton Class

public class Singleton {1

2

 private static Singleton uniqueInstance;3

4

 private Singleton() {}5

6

 public static Singleton getInstance() {7

 if (uniqueInstance == null) {8

 uniqueInstance = new Singleton();9

 }10

 return uniqueInstance;11

 }12

}13

14

Meets Requirements: static var, static method, private constructor

Example source has this class in ken/smallest augmented with test code5

World’s Smallest Python-Based Singleton Class

class Singleton(object):1

2

 _instance = None3

4

 def __new__(cls, *args, **kwargs):5

 if not cls._instance:6

 cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)7

 return cls._instance8

9

if __name__ == '__main__':10

 a = Singleton()11

 b = Singleton()12

13

 print "a = %s" % (a)14

 print "b = %s" % (b)15

16

Different Approach: static var, override constructor

only 8 lines of code!

Example source has this class in ken/smallest 6

World’s Smallest Ruby-based Singleton Class

require 'singleton'1

2

class Example3

 include Singleton4

end5

6

a = Example.instance7

b = Example.instance8

9

puts "a = #{a}" 10

puts "b = #{b}" 11

12

c = Example.new13

14

Yet a different approach, using a
mechanism in Ruby called a
“mixin”

The “include Singleton” statement
causes the Example class to be
modified such that its new()
method becomes private and an
instance() method is added to
retrieve an instance. As a bonus, it
will also handle hiding allocate(),
overriding the clone() and dup()
methods, and is thread safe!

Only 5 lines of code!
7

Thread Safe?

• The Java and Python code just shown is not thread safe

• This means that it is possible for two threads to attempt to create the
singleton for the first time simultaneously

• If both threads check to see if the static variable is empty at the same
time, they will both proceed to creating an instance and you will end up
with two instances of the singleton object (not good!)

• Example Next Slide

8

Program to Test Thread Safety

public class Creator implements Runnable {1

2

 private int id;3

4

 public Creator(int id) {5

 this.id = id;6

 }7

8

 public void run() {9

 try {10

 Thread.sleep(200L);11

 } catch (Exception e) {12

 }13

 Singleton s = Singleton.getInstance();14

 System.out.println("s" + id + " = " + s);15

 }16

17

 public static void main(String[] args) {18

 Thread[] creators = new Thread[10];19

 for (int i = 0; i < 10; i++) {20

 creators[i] = new Thread(new Creator(i));21

 }22

 for (int i = 0; i < 10; i++) {23

 creators[i].start();24

 }25

 }26

27

}28

29

Creates a “runnable” object
that can be assigned to a
thread.

When its run, its sleeps for a
short time, gets an instance of
the Singleton, and prints out
its object id.

The main routine, creates ten
runnable objects, assigns
them to ten threads and starts
each of the threads

9

Output for Non Thread-Safe Singleton Code

• s9 = Singleton@45d068
• s8 = Singleton@45d068
• s3 = Singleton@45d068
• s6 = Singleton@45d068
• s1 = Singleton@45d068
• s0 = Singleton@ab50cd
• s5 = Singleton@45d068
• s4 = Singleton@45d068
• s7 = Singleton@45d068
• s2 = Singleton@45d068

Whoops!

Thread 0 created an instance of the Singleton class at memory location
ab50cd at the same time that another thread (we don’t know which one)
created an additional instance of Singleton at memory location 45d068!

10

How to Fix?

public class Singleton {1

2

 private static Singleton uniqueInstance;3

4

 private Singleton() {}5

6

 public static synchronized Singleton getInstance() {7

 if (uniqueInstance == null) {8

 uniqueInstance = new Singleton();9

 }10

 return uniqueInstance;11

 }12

13

}14

15

In Java, the easiest fix is to add the synchronized keyword to the
getInstance() method. The book talks about other methods that address
performance-related issues. My advice: use this approach first! 11

Command Pattern: Definition

• The Command Pattern encapsulates a request as an object, thereby letting
you parameterize other objects with different requests, queue or log requests,
and support undoable operations

• Think of a Restaurant

• You, the Customer, give your Waitress an Order

• The Waitress takes the Order to the kitchen and says “Order Up”

• The Cook takes the Order and prepares your meal

• Think of the order as making calls on the Cook like “makeBurger()”

• A request (Order) is given to one object (Waitress) but invoked on another
(Cook)

• This decouples the object making the request (Customer) from the object
that responds to the request (Cook); This is good if there are potentially
many objects that can respond to requests

12

Command Pattern: Structure

action()
Receiver

setCommand()
Invoker

execute()
undo()

Command

execute()
undo()

ConcreteCommand public void execute() {
 receiver.action()
}

I’m leaving one piece out of this diagram: the client.

In order for this pattern to work, someone needs to create a command
object and set its receiver. And, someone needs to give command objects
to an invoker to invoke at a later time.

Those “someones” may be the same object, they may be different objects

Waitress

Cook Order

13

Example: Remote Control

• The example in the textbook involves a remote control for various household
devices.

• Each device has a different interface (plays role of Receiver)

• Remote control has uniform interface (plays role of Client): “on” and “off”

• Command objects are created to “load” into the various slots of the
remote control

• Each command has an execute() method that allows it to emit a
sequence of commands to its associated receiver

• Light: turn light on

• Stereo: turn Stereo on, select “CD”, play()

• In this way, the details of each receiver are hidden from the client. The client
simply says “on()” which translates to “execute()” which translates to the
sequence of commands on the receiver: nice loosely-coupled system

14

Enabling Undo

• The command pattern is an excellent mechanism for enabling undo
functionality in your application designs

• The execute() method of a command performs a sequence of actions

• The undo() method performs the reverse sequence of actions

• Assumption: undo() is being invoked right after execute()

• If that assumption holds, the undo() command will return the system to the
state it was in before the execute() method was invoked

• Since the Command class is a full-fledged object, it can track “previous
values” of the system, in order to perform the undo() request

• Example in book of a command to control “fan speed”. Before execute()
changes the speed, it records the previous speed in an instance variable

15

Macro Commands

• Another nice aspect of the Command pattern is that it is easy to create Macro
commands.

• You simply create a command that contains an array of commands that
need to be executed in a particular order

• execute() on the macro command, loops through the array of commands
invoking their execute() methods

• undo() can be performed by looping through the array of commands
backwards invoking their undo() methods

• From the standpoint of the client, a Macro command is simply a “decorator”
that shares the same interface as normal Command objects

• This is an example of one pattern building on another

16

Demonstration

• The example code for this lecture demonstrates several aspects of the
Command pattern

• Simple commands

• Simple Undo

• Macro Commands

17

Additional Uses: Queuing

• The command pattern can be used to handle the situation where there are a
number of jobs to be executed but only limited resources available to do the
computations

• Make each job a Command

• Put them on a Queue

• Have a thread pool of computation threads

• And one thread that pulls jobs off the queue and assigns them to threads
in the thread pool

• If all computation threads are occupied, then the job manager thread
blocks and waits for one to become free

18

Additional Uses: Logging

• This variation involves adding store() and load() methods to command objects
that allow them to be written to and read from a persistent store

• The idea is to use Command objects to support system recovery
functionality

• Imagine a system that periodically saves a “checkpoint” of its state to disk

• Between checkpoints, it executes commands and saves them to disk

• Imagine the system crashes

• On reboot, the system loads its most recent “checkpoint” and then looks
to see if there are saved commands

• If so, it executes those commands in order, taking the system back to
the state it was in just before the crash

19

Adapters in the Real World

• Our next pattern provides techniques for converting an interface that is not
compatible with an existing system into a different interface that is

• Real World Example: AC Power Adapters

• Electronic products made for the USA cannot be used directly with
electrical outlets found in most other parts of the world

• US 3-prong (grounded) plugs are not compatible with European wall
outlets

• To use, you need either

• an AC power adapter, if the US product has a “universal” power
supply, or

• an AC power convertor/adapter, if it doesn’t

• By example, OO adapters may simply provide adaptation services from one
interface to another, or may require more smarts to convert information from
one interface before passing it to the second interface

20

OO Adapters (I)

• Pre-Condition: You are maintaining an existing system that makes use of a
third-party class library from vendor A

• Stimulus: Vendor A goes belly up and corporate policy does not allow you to
make use of an unsupported class library.

• Response: Vendor B provides a similar class library but its interface is
completely different from the interface provided by vendor A

• Assumptions: You don’t want to change your code, and you can’t change
vendor B’s code.

• Solution?: Write new code that adapts vendor B’s interface to the interface
expected by your original code

21

OO Adapters (II)

Existing
System

Vendor
B

Class
Library

Interface Mismatch
Need Adapter

AdapterCreate Adapter

And then...
22

Vendor
B

Class
Library

OO Adapters (III)

Adapter
Existing
System

...plug it in

Benefit: Existing system and new vendor library do not change, new code is
isolated within the adapter.

23

Simple Example: A turkey hiding among ducks! (I)

• If it walks like a duck and quacks like a duck, then it must be a duck!

24

Simple Example: A turkey hiding among ducks! (II)

• If it walks like a duck and quacks like a duck, then it must might be a duck
turkey wrapped with a duck adapter… (!)

• Recall the Duck simulator from chapter 1?

public interface Duck {1

 public void quack();2

 public void fly();3

}4

5

public class MallardDuck implements Duck {6

7

 public void quack() {8

 System.out.println("Quack");9

 }10

 11

 public void fly() {12

 System.out.println("I'm flying");13

 }14

}15

16

25

Simple Example: A turkey hiding among ducks! (III)

• An interloper wants to invade the simulator

public interface Turkey {1

 public void gobble();2

 public void fly();3

}4

5

public class WildTurkey implements Turkey {6

7

 public void gobble() {8

 System.out.println("Gobble Gobble");9

 }10

 11

 public void fly() {12

 System.out.println("I'm flying a short distance");13

 }14

 15

}16

17

26

Simple Example: A turkey hiding among ducks! (IV)

• Write an adapter, that makes a turkey look like a duck

public class TurkeyAdapter implements Duck {1

2

 private Turkey turkey;3

 4

 public TurkeyAdapter(Turkey turkey) {5

 this.turkey = turkey;6

 }7

 8

 public void quack() {9

 turkey.gobble();10

 }11

 12

 public void fly() {13

 for (int i = 0; i < 5; i++) {14

 turkey.fly();15

 }16

 }17

 18

}19

20

1. Adapter implements
target interface (Duck).

2. Adaptee (turkey) is
passed via constructor and
stored internally

3. Calls by client code are
delegated to the appropriate
methods in the adaptee

4. Adapter is full-fledged
class, could contain
additional vars and methods
to get its job done

Demonstration 27

Adapter Pattern: Definition

• The Adapter pattern converts the interface of a class into another interface
that clients expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

• The client makes a request on the adapter by invoking a method from the
target interface on it

• The adapter translates that request into one or more calls on the adaptee
using the adaptee interface

• The client receives the results of the call and never knows there is an
adapter doing the translation

28

Adapter Pattern: Structure (I)

Object Adapter

Client
request()

Target
«interface»

request()
Adapter

specificRequest()
Adaptee

adaptee.specificRequest()

1. Client codes to an
interface, not an
implementation. Allows
creation of multiple adapter
classes, if needed.

2. Adapter makes use of
composition to access the
behavior of Adaptee. We can
pass any subclass of Adaptee
to the Adapter, if needed.

29

Adaptee Pattern: Structure (II)

Class Adapter

Client
request()

Target

request()
Adapter

specificRequest()
Adaptee

adaptee.specificRequest()

1. Requires use of multiple
inheritance, but now adapter
does not need to re-implement
target and/or adaptee behavior.

It simply overrides or inherits
that behavior instead.

Trade-Offs?

Demonstration30

Real World Adapters

• Before Java’s new collection classes, iteration over a collection occurred via
java.util.Enumeration

• hasMoreElements() : boolean

• nextElement() : Object

• With the collection classes, iteration was moved to a new interface:
java.util.Iterator

• hasNext(): boolean

• next(): Object

• remove(): void

• There’s a lot of code out there that makes use of the Enumeration interface

• New code can still make use of that code by creating an adapter that
converts from the Enumeration interface to the Iteration interface

• Demonstration

31

Difference between Adapter and Decorator

• Adapter and Decorator’s seem similar: how so?

• Answers

• They both wrap objects at run-time

• They both delegate requests to their wrapped objects

• How are they different?

• Answers

• Adapter converts one interface into another while maintaining functionality

• Decorator leaves the interface alone but adds new functionality

• Decorators are designed to be “stacked”; that’s less likely to occur with
adapters

32

Yet Another Adapter: Facade Pattern

• There is another way in which an adapter can be used between a client and
an adaptee: to simplify the interface of the adaptee(s)

• Imagine a library of classes with a complex interface and/or complex
interrelationships

• Book’s Example: Home Theater System

• Amplifier, DvdPlayer, Projector, CdPlayer, Tuner, Screen,
PopcornPopper (!), and TheatreLights

• each with its own interface and interclass dependencies

• Imagine steps for “watch movie”

• turn on popper, make popcorn, dim lights, screen down, projector on,
set projector to DVD, amplifier on, set amplifier to DVD, DVD on, etc.

• Now imagine resetting everything after the movie is done, or configuring
the system to play a CD, or play a video game, etc.

33

Facade Pattern: Definition

• The Facade Pattern provides a unified interface to a set of interfaces in a
subsystem. Facade defines a higher-level interface that makes the subsystem
easier to use.

• We place high level methods like “watch movie”, “reset system”, “play cd”
in a facade object and encode all of the steps for each high level service in
the facade.

• Client code is simplified and the client’s dependencies are greatly reduced

• A facade not only simplifies an interface, it decouples a client from a
subsystem of components

• Relationship to Adapter Pattern?

• Both facades and adapters may wrap multiple classes, but a facade’s
intent is to simplify, while an adapter’s is to convert between interfaces

34

Facade Pattern: Structure

Client Facade

Demonstration

35

New Design Principle

• The facade pattern demonstrates a new design principle

• Principle of Least Knowledge: “Talk only to your immediate friends”

• reminds you to create loosely coupled systems of cohesive objects

• also known as The Law of Demeter

• We want to reduce an object’s class dependencies to the bare minimum

• How many classes is this code coupled to?

public float getTemp() {

 return station.getThermometer().getTemperature();

};

36

Principle of Least Knowledge: Heuristics

• In order to implement the principle of least knowledge, follow these guidelines

• For any object

• Within any method of that object

• you may invoke methods that belong to

• the object itself

• objects passed in as a parameter to the method

• any object the method creates or instantiates

• any object that is stored as an instance variable of the host object

• The code on the previous slide violates these guidelines because we invoke
the method getTemperature() on a “friend of a friend”

• Change code to “return station.getTemperature()” to follow guidelines

• Requires adding “wrapper” method to station class

37

Example of all the “legal” method invocations

public class Car {1

2

 private Engine engine;3

 4

 public Car() {5

 }6

 7

 public void start(Key key) {8

 9

 Door doors = new Doors();10

 11

 boolean authorized = key.turns();12

 13

 if (authorized) {14

 engine.start();15

 updateDashboardDisplay();16

 doors.lock();17

 }18

 }19

 20

 public void updateDashboardDisplay() {21

 }22

 23

}24

25

object passed as parameter

component method

local method

object created by method

38

Wrapping Up

• Singleton allows you to manage the number of instances a class can have

• Command allows you to separate the “client” and “server” of a method call

• Adapter allows you to convert one interface into another, allowing the client
code and the adaptee to remain unchanged

• Decorator seen in new light: an adapter that “converts” an interface into itself
while adding new behaviors

• Facade is a variant of the adapter pattern in which the purpose is to (greatly)
simplify the adaptee’s interface

• Facade demonstrates the use of a new design principle, the Principle of Least
Knowledge, also known as the Law of Demeter

• often phrased “talk only to your friends”

• focus is on reducing coupling between classes

39

Coming Up Next

• Lecture 23: Template Methods, Iterator & Composite

• Read Chapters 8 — 9 of the Design Patterns Textbook

40

