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Listen: Stan Kenton’s Malaguena

• What is the structure of this song?
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Why Start with a Song?

• We are going to be learning about software architecture this week

• Thinking about music can help in understanding architecture

• What is the architecture of a song?

• Components: verses, refrain, solos, …

• Sub-Components: Notes, Rests, Lyrics

• Connectors: Arrangements, “the bridge”, “swing section”, … 

• Styles: Jazz, Classical, 80s alternative, indie, funk, goth, death metal, …

• Common (or Stylistic) Elements: melody, counter melody, echoing, themes,   
muscial pyramids, etc.

• Experience: same song can be vastly different based on the performers
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Lecture Goals

• Review material from Chapters 6 & 7 of the OO A&D textbook

• How do you solve big problems

• That is, how do you design and build really large software systems?

• Domain Analysis

• Use Case Diagrams

• Introduction to Software Architecture

• How do you use software architecture to guide the development 
process?

• The three Q’s of architecture

• Risk and how to reduce it

• Commonality Analysis

• Discuss the Chapters 6 & 7 Example: Gary’s Game Framework

• Emphasize the OO concepts/techniques encountered in Chapters 6 & 7
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Living in Smallville?

• So far, we’ve been discussing OO A&D in the context of small applications

• Rick’s Guitars: Less than 15 classes (at its worst)

• Doug’s Dog Doors: Never more than 5 classes!

• Will the techniques that we’ve learned so far apply to real systems?

• which tend to be big, complex, and consist of 100s to 1000s of classes

• The quick answer?

• Yes

• Our three step life cycle (make your software work, apply OO principles, strive 
for a maintainable, reusable design) still applies to large situations

• with the assistance of new techniques: software architecture, use case 
diagrams, domain analysis, design patterns, and more

• The long answer?
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Its just a matter of perspective!
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The (Sometimes Painful) Real World	

• Dealing with the difficulties of large-
scale, real-world software 
development can feel the same as if 
a bull is rapidly bearing down on you!

• But if you view the problem in the 
right way (and get out of the bull’s 
way pronto), the complexity of the 
real world can be handled

• The key is “divide and conquer”

• You can solve a big problem by 
breaking it into lots of functional 
pieces, and then work on each 
piece individually

• perhaps by applying “divide 
and conquer” again!

Big Problem

Smaller
Problems

Even
Smaller Problems
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What have we learned so far?

• Analysis helps ensure that your systems works in real-world contexts

• Analysis is even more important when working on large systems

• Get good requirements by understanding what the system needs to do

• Apply this to the small problems, combine to address the big problem

• Encapsulate what varies to achieve flexible, easy-to-change software

• In large systems, encapsulation breaks up big problems into small ones

• Code to an interface to create software that is easy to extend

• In large systems, coding to an interface can reduce internal dependencies

• Ensure that components have only one reason to change

• High cohesion is critical in large systems: individual pieces are 
independent of each other and can be worked on in isolation
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Example: Gary’s Games

• The example in this chapter involves designing a game framework (note: not 
a game but a game framework)

• The book presents you with a vision statement from your client

• It has some details but doesn’t come close to a requirements spec

• However, when dealing with a large system, avoid jumping straight into 
creating requirements and use cases

• You need a detailed understanding of the application domain (problem 
domain) before you can create a requirements spec and use cases

• We need to know

• What is the system like?

• strategy board games, it turns out

• What is the system not like?

• Halo 3 (for instance)
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Step 1: Listen to the Customer

• To gain this information, we need to meet with the customer and listen to their 
discussions about the system

• The “customer” may be many different people playing different roles

• Management

• Marketing

• Design

• Sales

• All will have important information to provide and the multiple perspectives 
will give you a more accurate picture of your system’s real-world context
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Step 2: Find the Features

• Using the information provided by the customer, identify the features that 
your system will have

• A feature is a high-level description of something a system needs to do

• Features can then lead to requirements

• Think of them as compound requirements

• One feature may be decomposed into multiple requirements

• These requirements then need to be implemented to satisfy the feature

• Because features are high-level, they are a useful for getting a project started 
when the customer has not yet provided you with a lot of details
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Gary’s Features

Features for Gary’s Game System

1. Supports different time periods, including fictional periods 
like sci-fi and fantasy

2. Supports add-on modules for additional campaigns or 
battle scenarios

3. Supports different types of terrain

4. Supports multiple types of troops or units that are game-
specific

5. Each game has a board, made up of square tiles, each with 
a terrain type.

6. The framework keeps up with whose turn it is an 
coordinates basic movement
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Feature vs. Requirement?

• The book warns against getting too caught up in the difference between 
features and requirements

• Just think of features as compound requirements

• Since they can be decomposed into lots of smaller requirements, they cover 
broad classes of functionality that the system has to support

• Thus making them easier to find than smaller requirements when a 
project is just getting started
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Step 3: Big Picture View

• The next step is to acquire a broad view of the major activities your system 
engages in:

• “What the system is supposed to do”

• without resorting to writing specific use cases

• use cases again require a lot of detail; detail that you might not have

• The solution?

• Identify the types of users that interact with the system (aka Actors)

• Identify the names of the use cases these actors interact with

• In other words, what are the major tasks handled by this system?

• This view is called the use case diagram
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Example

Game System Framework

Game Designer

Create New 

Game

Modify Existing 

Game

Deploy Game

System
Boundary

Use Cases
Actor

But how do features relate to this view of the system?
15



Getting back to features

• Use your feature list to make sure your use case diagram is complete

• Try to assign features to use cases

• If a feature can’t be assigned, then add use cases until coverage is 
complete

• The book assigns five of the features to the Create New Game use case

• I thought this was a bit excessive: for instance, I felt that the “add-on 
modules” feature should have been assigned to the “Modify” use case

• One feature “handle turns, coordinate movement” was left unassigned

• They asked the question: what Actor would need this use case?

• The answer: not a Game Designer but a Game itself

• Since a Game is built using the framework, its an external actor that needs 
its own use cases!
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Updated Use Case Diagram

Game System Framework

Game Designer

Create 

New Game

Modify 

Existing 

Game

Deploy 

Game

Game

Create 

Board

Move Units

Add/

Remove 

Units

Diagram gives “big picture” view of framework
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The Result?

• We have created a feature list to capture the BIG THINGS that your system 
needs to do

• Features don’t require as much detail as individual requirements

• They allow us to capture broad categories of functionality

• We drew a use case diagram to identify important actors and use cases

• without getting bogged down in the specifics of the use cases

• which often require a lot of detail

• These two artifacts combine to give us a “big picture” view of the system

• also called the “system at 10,000 feet” view

• It shows us what the system IS without getting into too much detail

• But, we can now use this as a starting point for additional OO A&D work once 
we break this information up into smaller pieces of functionality
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Domain Analysis

• These two artifacts by staying at a high level of abstraction allowed us to 
conduct domain analysis (without even knowing it!)

• Domain Analysis (def): The process of identifying, collecting, organizing, 
and representing the relevant information of a domain

• based upon the study of existing systems and their development 
histories, knowledge captured from domain experts, underlying theory, 
and emerging technology in the domain

• Feature lists capture requirements using terms familiar to the customer

• Rather than giving our customers: packages, UML diagrams, and code

• We give them: features and scenarios using familiar terminology

• This makes for very happy customers who can provide additional guidance 
now that “they know that you know” the core details of the domain
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What’s Next?

• The Big Break-Up

• That is, splitting our “big problem” into smaller problems

• The book introduces the concept of “module” (aka “package”) as a means 
to partition our large system into something more manageable

• Looking at the feature list, they created the following modules

• Game, Board, Units, Controller, Utilities

• (the last one was added just on general principle)

• What about Graphics?

• Not in Scope!

• Very important lesson with respect to framework design:

• Clearly define the functional boundaries between the framework and 
the applications that USE the framework

20



Design Patterns

• Its a bit premature but the book pauses to notice that in partitioning the 
framework the way we did, we have two of the pieces needed for a famous 
design pattern

• The  Model-View-Controller pattern

• The most important lesson at this point of the chapter is

• Design patterns don’t go into your code, they go into your BRAIN

• Design patterns are SOLUTIONS to common design PROBLEMS

• The more of these common solutions that you know, the better you’ll be 
at avoiding the common design problems

• Applying design patterns is one of the LAST steps of design

• They are best applied during “step 3” of our simple OO A&D process

• We will turn our attention to learning design patterns once we have finished 
with the OO A&D textbook  
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Turning a Big Problem into Smaller Problems

• Summary

• We listened to the customer: vision statement, domain analysis

• We made sure we understood the system: feature list

• We drew up blueprints for the system we’re building: use case diagram

• We broke the big problem up into smaller pieces of functionality: modules

• We apply design patterns to help us solve smaller problems: stay tuned!

• Moving on…

• Since we will be learning about the role software architecture plays in 
designing and implementing large software systems next lecture, lets end 
this lecture with a brief introduction
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Introduction to Software Architecture (I)

• Any complex system is composed of subsystems that interact with one 
another to provide the overall system’s intended functionality

• Software architecture is an area of software engineering research aimed 
at providing tools and techniques for specifying a system's subsystems and 
their interrelationships

• WARNING: This is the TRADITIONAL view of software architecture

• Our textbook has an alternate interpretation that focuses on the 
practicalities of incorporating software architecture techniques into your 
day-to-day work practice

• This is good! Its often difficult to understand how software architecture 
concerns impact day-to-day tasks and decision making
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Introduction to Software Architecture (II)

• The level of granularity for software architecture design is at the system level, 
not the package, module, or class level.

• For many complex systems, each individual subsystem may itself be a 
large software system that has its own internal architecture

• Software architecture is a relatively recent research area (mid-90s) with an 
active research community

• Architecture Description Languages

• Architecture Modeling Tools

• Architecture Analysis Tools

• Definition: The principled study of software components, including their 
properties, relationships, and patterns of combination
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Introduction to Software Architecture (III)

• The design of a system's architecture is one of the first places in which 
decisions concerning technologies for implementing the system are made

• For instance, consider the use of middleware technology or a large-scale 
relational database

• As much as we would like to separate design and implementation, 
these types of technologies are expensive; if a company has invested 
in them, it may not be possible to choose an alternative technology

• The design of a system's architecture is also the earliest phase in which 
certain non-functional requirements such as security, performance, and 
reliability can be addressed

• For instance, if a system's subsystems must share information using 
encrypted communication links, this can be specified in the system's 
architecture model
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Software Architecture (I)

C DA B
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Software Architecture (II)

C DA B
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Software Architecture (III)

C DA B

C DA B
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Software Architecture (IV)

C DA B

C DA B

C

D

A

B
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Software Architecture (V)

C DA B

C DA B

C

D

A

B

C

D

A

B
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Software Architecture (VI)

C DA B

C DA B

C

D

A

B

C

D

A

B

C

D

A

B
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Software Architecture (VII)

C DA B

C DA B

C

D

A

B

C

D

A

B

C

D

A

B

Pipe & Filter

Software Bus

Shared
Repository

Layered Abstract Machine
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The Role of Architecture (I)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design
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The Role of Architecture (II)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan
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The Role of Architecture (III)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios
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The Role of Architecture (IV)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces
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The Role of Architecture (V)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces

Buy/build strategy for each component
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The Role of Architecture (VI)

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

Problem definition, rationale, and financial plan

System features, functions, usage scenarios

Major components
and interfaces

Buy/build strategy for each component

Internal decomposition, functions, and data structures 
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The Role of Architecture (VII)

Planning Phases

Business
Case

Requirements

Architecture

High-Level
Design

Low-Level
Design

39



Component and Connector View

• Components: Computational elements or data stores

• Connectors: Means of interaction between components

• Useful Metaphor:

• Polo, Water Polo, and Soccer (aka football in the rest of the world)

• Similar in processors and data (components), but differ in connectors

• The C&C view describes a graph of components connected via connectors 
(often displayed as a boxes-and-arrows diagram)

• It is mainly a runtime view of a system's architecture: what components 
exist at runtime and how do these components communicate with one 
another

40



Wrapping Up

• More Tools in your Toolbox: Solving Big Problems

• Listen to the customer and figure out what they want you to build

• Put together a feature list, in language the customer understands

• Make sure your features are what the customer actually wants

• Create blueprints of the system using use case diagrams

• Break the big system up into lots of smaller pieces

• Apply design patterns to the smaller sections of the system

• Use basic OO A&D principles to design and code each smaller section

• Reviewed basic concepts of Software Architecture
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Bringing Order to Chaos

• At the start of a development project for a large, complex software system

• You don’t have a lot of information

• You don’t know a lot about your domain

• And yet…

• You are expected to make

• implementation decisions (concerning expensive pieces of middleware)

• decisions regarding non-functional requirements

• progress on decomposing the problem domain into manageable pieces

• progress on identifying the features of the system under design
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How Does One Start?

• Indeed after doing the work that we just described…

• domain analysis

• talking to customer

• developing feature list

• developing use case diagram

• which requires hard work like identifying all of the different types of 
users and their major tasks

• decomposing “big problem” into “smaller modules”

• … you may be feeling overwhelmed with the information you have so far

• or have doubts about its accuracy (which then leads to paralysis)

• So, how does one identify what to do next?
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Answer: Software Architecture

• It’s not enough to identify the individual pieces of a big problem

• You also need to know how those pieces fit together

• You need to have a mechanism for prioritizing your work on those pieces

• The missing piece is the software architecture for your system

• A software architecture provides a structure to the design of a software 
system, highlights the most important parts of your system, and the 
relationships between those parts

• A second definition

• A software architecture is the organizational structure of a system, 
including its decomposition into parts, their connectivity, interaction 
mechanisms, and the guiding principles and decisions you use in the 
design of a system

• An architecture can take a chaotic mess and turn it into a well-ordered app!
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Back to the Three Step Process

• Our three step OO A&D process

• Make sure your software does what the customer wants it to do

• Apply basic OO principles to add flexibility

• Strive for a maintainable, reusable design

• points the way towards what to do first: Focus on Functionality

• As such, we will start with what the customer wants to do

• And for large systems that means looking at the feature list
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The Feature List

Features for Gary’s Game System

1. Supports different time periods, including fictional periods 
like sci-fi and fantasy
2. Supports add-on modules for additional campaigns or 
battle scenarios
3. Supports different types of terrain
4. Supports multiple types of troops or units that are game-
specific
5. Each game has a board, made up of square tiles, each with 
a terrain type.
6. The framework keeps up with whose turn it is an 
coordinates basic movement

But now the question is which of these are the 
most important?
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The Three Qs of Architecture

• We are trying to identify the important functionality of our system

• the features that are architecturally significant

• To identify important pieces of functionality, ask 3 questions of each feature

• Is the feature part of the essence of the system?

• The essence of a system is what that system is at its most basic level

• “If I don’t implement this feature, would the system meet its goals?”

• What does the feature mean?

• Not having a clear idea might indicate that the feature can take a lot of 
time to get right; best to start on it early

• How will I implement the feature?

• Focus on features that seem really hard to implement so they don’t 
bog you down later in the development cycle
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The Essence of Gary’s Game Framework

• After applying the 3 Qs of architecture, the book focuses on these features

1.The board for the game (the essence)

2.Game-Specific Units (the essence and what does this mean?)

3.Framework coordinates basic movement (Can we implement this?)

• Having identified these features, we can now examine them in depth

• and this will serve to finally get the project moving… after these features 
get fleshed out, it will be easier to move on to the remaining features/
modules and flesh them out as well
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Why are these questions important? Risk

• The importance of the three Qs of architecture is that these questions help 
you to identify the major risks associated with your development process

• The reason that the three features on the previous slide are architecturally 
significant is that they all introduce RISK to your project (i.e. the risk that 
the project will fail due to this particular feature/requirement)

• If we don’t know what some feature means, we have a risk of not 
meeting schedules and deadlines as we perform a lot of work to 
discover its meaning

• If a feature seems hard to implement, there is a risk we won’t figure it 
out or it will take a really long time to accomplish

• If the core features are not in place, there’s a risk that the customer 
won’t like the finished product

• The key task during this phase of transitioning from large, complex problems 
to smaller, more manageable, problems is reducing risk
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Feature 1: The board

• We want to consider the design of the board

• an essential part of the framework

• Since we don’t have a lot of detail from the user, we can’t create a use case

• but we may have enough information to develop a single scenario

• recall that a single use case will have one or more paths (aka scenarios)

• A scenario for the board is developed

• create the board

• move player 1’s and player 2’s units such that a battle takes place

• take into consideration the terrain that they encounter

• perform the battle

• remove units that lost the battle from the board
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From Scenario to Code

public class Board {1

2

    private int width, height;3

    private List tiles;4

    5

    public Board(int width, int height) {6

        this.width = width;7

        this.height = height;8

        initialize();9

    }10

    11

    private void initialize() {12

        tiles = new ArrayList(width);13

        for (int i=0; i<width; i++) {14

            tiles.add(i, new ArrayList(height));15

            for (int j=0; j<height; j++) {16

                ((ArrayList)tiles.get(i)).add(j, new Tile());17

            }18

        }19

    }20

    21

    public Tile getTile(int x, int y) {22

        return (Tile)((ArrayList)tiles.get(x-1)).get(y-1);23

    }24

    25

    public void addUnit(Unit unit, int x, int y) {26

        getTile(x, y).addUnit(unit);27

    }28

    29

    public void removeUnit(Unit unit, int x, int y) {30

        getTile(x, y).removeUnit(unit);31

    }32

    33

    ...34

}35

36

Board is placed in a Java package called 
board (not shown)

The creation of the board is moved out of 
the constructor and into its own method

Place a Tile() at each coordinate and offer 
a means for retrieving tiles

Delegate the handling of Units to the Tile 
class (not all Unit methods shown)

Create skeleton classes for Tile and Unit… 
they are outside our focus for now
    Focus on one feature at a time!

Don’t get distracted with features that 
won’t reduce the risks of your project
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Reflection: Rapid Prototyping

• Writing code for the board class at this stage of the game is an example of 
rapid prototyping

• It helps answer the question

• do I really understand what the board has to do?

• We could have also chosen to just create a class diagram and outline 
Board’s attributes and methods and associations, like this:

getTile(int, int): Tile
addUnit(Unit, int, int)
removeUnit(Unit, int, int)
removeUnits(int, int)
getUnits(int, int): List

width: int
height: int
tiles: Tile [*][*]

Board

Unit

addUnit(Unit)
removeUnit(Unit)
getUnits(): List
removeUnits()

units: Unit [*]
Tile

*

units

Note: strange use of associations in this 
diagram. The associations from Board to 
Unit and Tile denote “coupling” 
relationships, rather than the normal 
“instance variable” relationship… I 
recommend against using UML in this 
fashion!
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Feature 2: Game Specific Units

• We focus on the “game specific units” feature next for several reasons

• Its a key feature but currently way underdeveloped (see previous diagram)

• It is related to the Board concept and since architecture includes 
specifying the relationships between major system components, we need 
to define Units further such that we can begin to consider the relationship 
between Board and Unit

• Game Specific Units

• Different game designers have different ideas about Units

• some want attack, defense, and experience properties

• some want lots of weapons

• some want units to have names and track relationships with other units

• all want different types of units: land, air, and space
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Commonality Analysis

• For framework design, we want to identify the shared properties of all the 
different requests received from the game designers

• Shared aspects go in the framework

• Variable aspects go outside the framework but should still be accessible to 
the framework via inheritance, polymorphism, interfaces, etc.

• The common need in this instance is a bit abstract but can be stated 
succinctly

• They need a Unit class with a variable number of atts of different types

• Sound familiar?

• This is exactly the same requirement that our InstrumentSpec class had

• When the number and type of properties is the “thing that varies”, make 
the properties dynamic via a collection class

• We want to avoid, therefore, an approach in which Unit is sub-classed
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Solution: Just like Instrument Spec

setType(String)
getType(): String
setProperty(String, Object)
getProperty(String): Object

type: String
properties: Map

Unit

Provides Scalability

Number of 
Unit Types

Separate 
Subclasses

Dynamic 
Properties

3 4 1

25 26 1

100 101 1

Note: no need for code this 
time. The implementation of 
this class is obvious!
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To Code or Not to Code

• The book brings up an excellent point on page 364

• They have a discussion about why they wrote code for the Board class but 
skipped writing code for the Unit class, noting that reducing risk is key

• Do some initial design work to verify that a feature is essential, well 
understood, and feasible

• If you need code, then write it but if you do not, then avoid it!

• They then ask the question “So, there’s not a lot of code involved in OO A&D, 
is there?”. Their response is excellent.

• OO A&D is ALL about code. Its about getting your design right, having it 
be clean, well structured, flexible and extensible… because if you get that 
right then the code will be EASY to write and maintain

• Sometimes the best way to write great code is to hold off on writing 
code as long as you can!
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Feature 3: Coordinating Movement

• They repeat the process used for feature 2 for feature 3

• Ask the Customer

• Perform Commonality Analysis

• Develop a Design for the feature (gain confidence you can implement it)

• After doing these two steps, they acquire this information:

What’s common? What’s variable?

Check if move is legal
The algorithm to check the legality of a move is 

different for every game

Unit’s attributes determine how far it can move
The number and specific properties used for this are 

different for every game

Other factors (such as terrain) will affect movement
The other factors that affect movement are different 

for every game
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What do they decide? They Punt!

• In the book, they decide to punt on this feature and declare it out-of-scope

• Lame! (In my not so humble opinion…) 

• They say: “When you find more things that are different about a feature than 
things that are the same, there may not be a good generic solution”

• But I think they missed out on an opportunity to further define the Board and 
Unit classes (note: the book specifically discounts my approach)

• In particular, if they had made Unit an abstract base class, they could have 
game designers add subclasses that represent movement rules for 
different types of Units (losing some of the previous scalability)

• The abstract interface: canMove(Tile), determinePath(), etc.

• The Board class could employ a Strategy pattern to allow Units to 
retrieve the other factors that might affect movement, etc.

• The framework’s complexity goes up, but in exchange it does more for you!
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Classic Programmer Reaction

• “Great. So we’ve got a little sheet of paper with some check marks, a few 
classes that we know aren’t finished, and lots of UML diagrams. And I’m 
supposed to believe this is how you write great software.”

• Absolutely!

• Remember this is just the start of the first iteration of many

• When you start a project, you don’t have a lot of information and you can 
waste a lot of time if you don’t start by acquiring more detail in a 
systematic fashion

• Domain Analysis, The Three Qs of Architecture, and Commonality 
Analysis can all help you to systematically whittle a large problem 
down to smaller more manageable chunks

• The key point is to reduce risk with each step you take, so you can get 
to a point where you have a handle on the “big picture” and can start 
working on its constituent parts
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Wrapping Up

• Architecture helps you turn all your diagrams, plans, and feature lists into a 
well-ordered application

• Focus on features that are the essence of your system, that have unclear 
meanings, or that don’t seem feasible

• If you don’t need all of the detail of a use case, just write simple scenarios to 
help you identify the characteristics of a particular feature

• These simple scenarios can be turned into the “main path” of a use case 
at a later stage in the software life cycle

• Be open to getting lots of feedback from your customer… if something is 
unclear, go back to them and get additional feedback so that you can move 
forward with your design
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Coming Up Next

• Lecture 12: Originality is Overrated

• Read Chapter 8 of the OO A&D book

• Lecture 13: Testing And Iterating

• Read Chapter 9 of the OO A&D book
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