Exercises on reductions CSCI 6114 Fall 2023

Joshua A. Grochow

September 12, 2023

Definition 1 (Many-one reduction). We say that A polynomial-time manyone reduces to B, sometimes called Karp reduces, denoted $A \leq_m^p B$, if there is a polynomial-time computable function r such that for all strings x,

$$x \in A \Leftrightarrow r(x) \in B$$

- 1. Show that \leq_m^p is transitive: if $A \leq_m^p B$ and $B \leq_m^p C$, then $A \leq_m^p C$.
- 2. We say that a complexity class C is closed under polynomial-time many-one reductions if $B \in C$ and $A \leq_m^p B$ implies $A \in C$.
 - (a) Prove that P,NP, and coNP are closed under polynomial-time many-one reductions.
 - (b) Prove that the previous result relativizes, that is, for any oracle X, $\mathsf{P}^X \mathsf{NP}^X$, and coNP^X are closed under polynomial-time many-one reductions.
 - (c) Conclude that for all k, $\Sigma_k \mathsf{P}$ and $\Pi_k \mathsf{P}$ are closed under \leq_m^p , and also that PH is closed under \leq_m^p .
- 3. Show that EXP and PSPACE are closed under \leq_m^p . Show that this result relativizes.
- 4. E denotes the class of languages decidable in time $2^{O(n)}$, sometimes called "simply exponential time" (to distinguish it from $2^{\text{poly}(n)}$).
 - (a) Show that E is a proper subset of EXP, and that the closure of EXP is the closure of E under \leq_m^p (that is, EXP is the smallest class containing E and closed under \leq_m^p).

- (b) Show that E is closed under polynomial-time many-one reductions with linear stretch. What this means is that there is a polynomial-time many-one reduction r and a constant c such that $|r(x)| \leq c|x|$ for all strings x.
- (c) Show that the previous two parts relativize.

Definition 2. We say that A polynomial-time Turing reduces to B (sometimes called Cook reduces), denoted $A \leq_T^p B$, if there is a polynomial-time oracle TM M^{\Box} such that A is correctly decided by M^B .

- 3. (a) Show that \leq_T^p is transitive.
 - (b) Show that for any oracle X, we have $\mathsf{P}^{(\mathsf{P}^X)} = \mathsf{P}^X$. (Realize that this is the same question as part (a).)
- 4. Prove that P is closed under \leq_T^p .
- 5. Is NP closed under \leq_T^p ? What happens (complexity-class-wise) if it is? What about $\Sigma_k P$?
- 6. Prove that PH is closed under \leq_T^p .
- 7. Prove that EXP and PSPACE are closed under \leq_T^p .
- 8. Prove that if L is complete for a complexity class C under \leq_T^p reductions, then $\mathsf{P}^{\mathcal{C}} = \mathsf{P}^L$. Conclude that $\mathsf{P}^{\mathsf{NP}} = \mathsf{P}^{\mathsf{coNP}} = \mathsf{P}^{SAT}$.

Definition 3. We say that A polynomial-time truth-table reduces to B denoted $A \leq_{tt}^{p} B$ if there are polynomial-time functions q and V such that

- q(x) outputs a tuple of strings $q(x) = (q_1, \ldots, q_k)$ ("q" for "queries")
- $x \in A$ if and only if $V(x, B(q_1), \ldots, B(q_k)) = 1$.

Note that the number of queries k can depend on x.

We say that A polynomial-time k-truth-table reduces to B, denoted $A \leq_{k-tt}^{p} B$, if $A \leq_{tt}^{p} B$ and the number of queries made in the reduction is at most k. (In particular, \leq_{tt}^{p} is the same as $\leq_{poly-tt}^{p}$.)

- 9. (a) Prove that \leq_{tt}^{p} is transitive.
 - (b) Prove that \leq_{1-tt}^{p} is transitive.
 - (c) Prove that $A \leq_{k-tt}^{p} B \leq_{\ell-tt}^{p} C$ implies $A \leq_{k\ell-tt}^{p} C$.

10. Prove that

$$A \leq_m^p B \Rightarrow A \leq_{1-tt}^p B \Rightarrow A \leq_{2-tt}^p B \Rightarrow \dots \Rightarrow A \leq_{tt}^p B \Rightarrow A \leq_T^p B.$$

- 11. Prove that P, EXP, and PSPACE are closed under \leq_{k-tt}^{p} and \leq_{tt}^{p} .
- 12. Is NP closed under \leq_{1-tt}^{p} ? What happens if it is?
- 13. Prove that PH is closed under \leq_{tt}^{p} .