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True / False Test

Baumgartner, Prosser, and Crowell are grading a calculus exam. There is a
true-false question with ten parts. Baumgartner notices that one student
has only two out of the ten correct and remarks, “The student was not even
bright enough to have flipped a coin to determine his answers.” “Not so
clear,” says Prosser. “With 340 students I bet that if they all flipped coins to
determine their answers there would be at least one exam with two or fewer
answers correct.” Crowell says, “I’m with Prosser. In fact, I bet that we
should expect at least one exam in which no answer is correct if everyone
is just guessing.” Who is right in all of this?

Hint: Simulate a draw from the appropriate binomial distribution
numpy.random.binomial
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One Draw
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How to do a Draw

>>> from numpy.random import binomial
>>> res = binomial(10, .5, 340)
>>> from collections import Counter
>>> Counter(res)
Counter({5: 83, 4: 75, 6: 74, 7: 48, 3: 31, 8: 14, 2: 11, 1: 3, 9: 1})
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Many Experiments

>>> res = binomial(10, .5, (1000, 340))
>>> two_or_less = sum(1 for experiment in res if

any(y<=2 for y in experiment))
>>> two_or_less
1000
>>> zeros = sum(1 for experiment in res if

any(y==0 for y in experiment))
>>> zeros
302
>>> import matplotlib.pyplot as plt
>>> plt.hist(res[0])
(array([ 1., 4., 16., 50., 73., 71., 67., 39., 16., 3.]), array([ 0. , 0.9, 1.8, 2.7, 3.6, 4.5, 5.4, 6.3, 7.2, 8.1, 9. ]), <a list of 10 Patch objects>)
>>> plt.show()

Data Science: Jordan Boyd-Graber | UMD Parameters | 5 / 18



Peak of Poisson Distribution

Show that a most probable outcome of a Poisson with parameter λ is the
integer m s.t. λ−1≤m≤λ. When will there be two most probable values?

� Consider the mass function λx e−λ

x!

� Compare x and x +1 as a ratio of probabilites
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Ratio of probabilities

p(X = t +1)

p(X = t)
=
λt+1e−λ

(t +1)!

t!

λte−λ
(1)

=
λ

t +1
(2)

Increasing so long as t <λ−1. If t =λ−1, then constant (i.e., two most
probable values). After that, decreasing.

p(X = t)











> p(X = t +1) if λ> t +1

= p(X = t +1) if λ= t +1

< p(X = t +1) if λ< t +1

(3)
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Poisson Plot Code

def poisson_density(mean):
return lambda x: mean**x * exp(-mean) / factorial(x)

if __name__ == "__main__":
mm = float(sys.argv[1])
x_pos = range(10)
y_pos = [poisson_density(mm)(x) for x in x_pos]
plt.bar(x_pos, y_pos)
plt.savefig("poisson-" + str(mm) + ".png")
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Poisson Plots

λ= 0.5
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Poisson Plots

λ= 0.9
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Poisson Plots

λ= 1.0
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Poisson Plots

λ= 1.5
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Poisson Plots

λ= 2.0
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Distribution of Bearings

Bridies’ Bearing Works manufactures bearing shafts whose diameters are
normally distributed with parameters µ= 1, = .002. The buyer’s
specifications require these diameters to be 1.000± .003 cm. What fraction
of the manufacturer’s shafts are likely to be rejected? If the manufacturer
improves her quality control, she can reduce the value of σ. What value of
σ will ensure that no more than 1 percent of her shafts are likely to be
rejected?

Hint: scipy.stats.norm has cdf, it uses standard deviation as
the scale.
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Cummulative Distribution Function
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What is rejected?

>>> from scipy.stats import norm
>>> rej = norm.cdf(.997, loc=1, scale=0.002)
>>> rej += 1 - norm.cdf(1.003, loc=1, scale=0.002)
>>> rej
0.13361440253772297
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What does σ have to be?

>>> def rej(sd):
... val = norm.cdf(.997, loc=1, scale=sd)
... return val + 1 - norm.cdf(1.003, loc=1, scale=sd)
>>> for x in range(100):
... val = 0.001 + x/100000.
... print("%0.04f\t%f" % (val, rej(val)))
0.00115 0.009089
0.00116 0.009704
0.00117 0.010344
0.00118 0.011010
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Waiting Time

Suppose that the time (in hours) required to repair a car is an exponentially
distributed random variable with rate parameter λ= 1/2. What is the
probability that the repair time exceeds 4 hours? If it exceeds 4 hours what
is the probability that it exceeds 8 hours?

Hint: Either do an integral or use Python’s
scipy.stats.expon.cdf function. [Note! scale = 1/λ]
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Math Solution

P(X ≥ x) =

∫ ∞

x

λe−λtdt =−e−λt
�

�

�

∞

x
= e−λx (4)

P(X ≥ 4 |λ= .5) = e−2 =0.135 (5)

(6)
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Python Solution

>>> from scipy.stats import expon
>>> 1.0 - expon.cdf(4, scale=2)
0.13533528323661298

>>> a = (1.0 - expon.cdf(8, scale=2))
>>> a / (1.0 - expon.cdf(4, scale=2))
0.13533528323661298
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Wrapup

� Understand difference between pmf and cdf

� Know how to call distributions

� Understand what parameters are
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