Conditional Probability Practice

Data Science: Jordan Boyd-Graber University of Maryland
MARCH 1, 2018

Dice

A die is rolled twice

what is the probability that the sum of the faces is greater than 7 , given that

- the first outcome was 4 ?
- the first outcome was greater than 4?
- the first outcome was a 1 ?
- the first outcome was less than 5 ?

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=\frac{9 / 36}{1 / 3}=\frac{27}{36}=\frac{3}{4}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=\frac{9 / 36}{1 / 3}=\frac{27}{36}=\frac{3}{4}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=1\right)}{p\left(X_{1}=1\right)}=$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=\frac{9 / 36}{1 / 3}=\frac{27}{36}=\frac{3}{4}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=1\right)}{p\left(X_{1}=1\right)}=\frac{0}{1 / 6}=0$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=\frac{9 / 36}{1 / 3}=\frac{27}{36}=\frac{3}{4}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=1\right)}{p\left(X_{1}=1\right)}=\frac{0}{1 / 6}=0$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}<5\right)}{p\left(X_{1}<5\right)}=$

Dice

- $p\left(X_{1}+X_{2}>7 \mid X_{1}=4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=4\right)}{p\left(X_{1}=4\right)}=\frac{3 / 36}{1 / 6}=\frac{1}{2}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}>4\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}>4\right)}{p\left(X_{1}>4\right)}=\frac{9 / 36}{1 / 3}=\frac{27}{36}=\frac{3}{4}$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}=1\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}=1\right)}{p\left(X_{1}=1\right)}=\frac{0}{1 / 6}=0$
- $p\left(X_{1}+X_{2}>7 \mid X_{1}<5\right)=\frac{p\left(X_{1}+X_{2}>7 \wedge X_{1}<5\right)}{p\left(X_{1}<5\right)}=\frac{6 / 36}{2 / 3}=\frac{18}{64}=\frac{1}{4}$

Children

What is the probability a family of two children has two boys

- given that it has at least one boy?
- given that the first child is a boy?

Children

- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)=$
- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T}\right)=$

Children

- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)}=$
- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T}\right)=$

Children

- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T}\right)=$

Children

- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T}\right)}=$

Children

- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T} \vee X_{2}=\mathrm{T}\right)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
- $P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T} \mid X_{1}=\mathrm{T}\right)=\frac{P\left(X_{1}=\mathrm{T}, X_{2}=\mathrm{T}\right)}{P\left(X_{1}=\mathrm{T}\right)}=\frac{1 / 4}{1 / 2}=\frac{1}{2}$

Conditional Probabilities

One coin in a collection of 65 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 6 times in a row, what is the probability that it is the two-headed coin?

Conditional Probabilities

- Let C be the coin chose (T for fake)
- Let H be the number of heads out of six

$$
\begin{equation*}
P(C=\mathrm{T} \mid H=6)= \tag{1}
\end{equation*}
$$

Conditional Probabilities

- Let C be the coin chose (T for fake)
- Let H be the number of heads out of six

$$
\begin{equation*}
P(C=\mathrm{T} \mid H=6)=\frac{P(C=\mathrm{T} \wedge H=6)}{P(H=6)}= \tag{1}
\end{equation*}
$$

Conditional Probabilities

- Let C be the coin chose (T for fake)
- Let H be the number of heads out of six

$$
\begin{equation*}
P(C=\mathrm{T} \mid H=6)=\frac{P(C=\mathrm{T} \wedge H=6)}{P(H=6)}=\frac{1 / 65}{1 / 65+\frac{64}{65} \cdot \frac{1}{2^{6}}}= \tag{1}
\end{equation*}
$$

Conditional Probabilities

- Let C be the coin chose (T for fake)
- Let H be the number of heads out of six

$$
\begin{equation*}
P(C=\mathrm{T} \mid H=6)=\frac{P(C=\mathrm{T} \wedge H=6)}{P(H=6)}=\frac{1 / 65}{1 / 65+\frac{64}{65} \cdot \frac{1}{2^{6}}}=\frac{1 / 65}{2 / 65}=\frac{1}{2} \tag{1}
\end{equation*}
$$

Bayes Rule

There's a test for Boogie Woogie Fever (BWF). The probability of geting a positive test result given that you have BWF is 0.8 , and the probability of getting a positive result given that you do not have BWF is 0.01 . The overall incidence of BWF is 0.01 .

1. What is the marginal probability of getting a positive test result?
2. What is the probability of having BWF given that you got a positive test result?

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=\sum_{x=\mathrm{T}, \perp} P(T=\mathrm{T}, D=x)=$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=\sum_{x=\mathrm{T}, \perp} P(T=\mathrm{T}, D=x)=0.01 \cdot .8+.99 \cdot .01=$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=T)=\sum_{x=T, \perp} P(T=T, D=x)=0.01 \cdot .8+.99 \cdot .01=0.02$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=\sum_{x=T, \perp} P(T=\mathrm{T}, D=x)=0.01 \cdot .8+.99 \cdot .01=0.02$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=\frac{P(T=\mathrm{T} \mid D=\mathrm{T}) P(D=\mathrm{T})}{P(T=\mathrm{T})}=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=\sum_{x=\mathrm{T}, \perp} P(T=\mathrm{T}, D=x)=0.01 \cdot .8+.99 \cdot .01=0.02$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=\frac{P(T=\mathrm{T} \mid D=\mathrm{T}) P(D=\mathrm{T})}{P(T=\mathrm{T})}=\frac{0.8 \cdot 0.01}{0.02}=$

Bayes Rule

Let D be the disease, T be the test

- $P(T=\mathrm{T})=\sum_{x=T, \perp} P(T=\mathrm{T}, D=x)=0.01 \cdot .8+.99 \cdot .01=0.02$
- $P(D=\mathrm{T} \mid T=\mathrm{T})=\frac{P(T=\mathrm{T} \mid D=\mathrm{T}) P(D=\mathrm{T})}{P(T=\mathrm{T})}=\frac{0.8 \cdot 0.01}{0.02}=0.4$

