

Probability Practice

Data Science: Jordan Boyd-Graber University of Maryland FEBRUARY 12, 2018

Big Picture

- Probabilities
- Need to have intuitions for later models
- Key ideas: marginal distributions, independence

Marginal Probabilities

A voter can either be a Democrat or Republican (f) and has an age (A)

□
$$p(F = D) = .45$$

□ $p(A < 30, F = D) = .2, p(A < 30, F = R) = .1$
□ $p(A > 50, F = D) = .1$
□ $p(30 \le a \le 50) = .3$

Marginal Probabilities

- A voter can either be a Democrat or Republican (f) and has an age (A)
 - □ p(F = D) = .45□ p(A < 30, F = D) = .2, p(A < 30, F = R) = .1□ p(A > 50, F = D) = .1□ $p(30 \le a \le 50) = .3$
- What is $p(30 \le A \le 50, F = D)$?
- What is $p(30 \le A \le 50, F = R)$?
- What is p(A > 50, F = R)?

	D	R	Marginal
< 30	.2	.1	
30 <i>≤ a</i> ≤ 50			.3
> 50	.1		
Marginal	.45		1.0

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50			.3
> 50	.1		
Marginal	.45		1.0

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤a</i> ≤50			.3
> 50	.1		.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤a</i> ≤50	x		.3
> 50	.1		.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50	x	У	.3
> 50	.1		.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50	X	У	.3
> 50	.1	Ζ	.4
Marginal	.45	.55	1.0

$$.2 + x + .1 = .45$$

 $x + y = .3$
 $.1 + z = .4$

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50	.15	У	.3
> 50	.1	Ζ	.4
Marginal	.45	.55	1.0

$$.2 + x + .1 = .45$$

 $x + y = .3$
 $.1 + z = .4$

x = .45 - .1 - .2 = .15

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50	.15	.15	.3
> 50	.1	Ζ	.4
Marginal	.45	.55	1.0

$$.2 + x + .1 = .45$$

 $x + y = .3$
 $.1 + z = .4$

$$y = .3 - x = .3 - .15 = .15$$

	D	R	Marginal
< 30	.2	.1	.3
30 <i>≤ a</i> ≤ 50	.15	.15	.3
> 50	.1	.3	.4
Marginal	.45	.55	1.0

$$.2 + x + .1 = .45$$

 $x + y = .3$
 $.1 + z = .4$

z = .4 - .1 = .3

	D	R	Marginal
< 30			.3
30 <i>≤a≤</i> 50			.3
> 50			.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.135		.3
30 <i>≤a</i> ≤50			.3
> 50			.4
Marginal	.45	.55	1.0

	D	R	Marginal	
< 30	.135	.165	.3	
30 <i>≤a</i> ≤50			.3	
> 50			.4	
Marginal	.45	.55	1.0	

	D	R	Marginal
< 30	.135	.165	.3
30 <i>≤ a</i> ≤ 50	.135		.3
> 50			.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.135	.165	.3
30 <i>≤ a</i> ≤ 50	.135	.165	.3
> 50			.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.135	.165	.3
30 <i>≤ a</i> ≤ 50	.135	.165	.3
> 50	.18		.4
Marginal	.45	.55	1.0

	D	R	Marginal
< 30	.135	.165	.3
30 <i>≤a</i> ≤50	.135	.165	.3
> 50	.18	.22	.4
Marginal	.45	.55	1.0

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

$$35 \cdot \frac{1}{38} + -1\frac{37}{38} =$$

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

$$35 \cdot \frac{1}{38} + -1\frac{37}{38} = -0.052 \tag{1}$$

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

$$1 \cdot \frac{18}{38} - 1 \cdot \frac{20}{38} =$$

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

$$1 \cdot \frac{18}{38} - 1 \cdot \frac{20}{38} = -0.052 \tag{2}$$

Is Entropy Non-negative?

We know that

$$\log p(x) \le 0 \tag{3}$$

Is Entropy Non-negative?

We know that

ff $0 \le x \le 1$. Thus,

$$\log p(x) \le 0$$
 (3)
 $-\log p(x) > 0.$ (4)

Data Science: Jordan Boyd-Graber | UMD

Is Entropy Non-negative?

We know that

$$\log p(x) \le 0 \tag{3}$$

ff $0 \le x \le 1$. Thus,

$$-\log p(x) > 0. \tag{4}$$

And multiplying by a non-negative probability means

-

$$-\rho(x)\log\rho(x) \ge 0, \tag{5}$$

so their sum is non-negative.