Probability Practice

Data Science: Jordan Boyd-Graber University of Maryland
FEBRUARY 12, 2018

Big Picture

- Probabilities
- Need to have intuitions for later models
- Key ideas: marginal distributions, independence

Marginal Probabilities

- A voter can either be a Democrat or Republican (f) and has an age (A)

ㅁ $p(F=\mathrm{D})=.45$

- $p(A<30, F=\mathrm{D})=.2, p(A<30, F=\mathrm{R})=.1$

ㅁ $p(A>50, F=D)=.1$

- $p(30 \leq a \leq 50)=.3$

Marginal Probabilities

- A voter can either be a Democrat or Republican (f) and has an age (A)
- $p(F=\mathrm{D})=.45$
- $p(A<30, F=\mathrm{D})=.2, p(A<30, F=\mathrm{R})=.1$

ㅁ $p(A>50, F=D)=.1$

- $p(30 \leq a \leq 50)=.3$
- What is $p(30 \leq A \leq 50, F=\mathrm{D})$?
- What is $p(30 \leq A \leq 50, F=\mathrm{R})$?
- What is $p(A>50, F=\mathrm{R})$?

Solving the Marginal Probabilities

	D	R	Marginal
<30 .2	.1		
$30 \leq a \leq 50$			
>50	.1		.3
Marginal	.45	1.0	

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$.3	
>50	.1		
Marginal	.45	1.0	

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$.3
>50	.1		.4
Marginal	.45	.55	1.0

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$	x		.3
>50	.1		.4
Marginal	.45	.55	1.0

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$	x	y	.3
>50	.1		.4
Marginal	.45	.55	1.0

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$	x	y	.3
>50	.1	z	.4
Marginal	.45	.55	1.0

$$
\begin{aligned}
.2+x+.1 & =.45 \\
x+y & =.3 \\
.1+z & =.4
\end{aligned}
$$

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$.15	y	.3
>50	.1	z	.4
Marginal	.45	.55	1.0

$$
\begin{aligned}
.2+x+.1 & =.45 \\
x+y & =.3 \\
.1+z & =.4
\end{aligned}
$$

$x=.45-.1-.2=.15$

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$.15	.15	.3
>50	.1	z	.4
Marginal	.45	.55	1.0

$$
\begin{aligned}
.2+x+.1 & =.45 \\
x+y & =.3 \\
.1+z & =.4
\end{aligned}
$$

$y=.3-x=.3-.15=.15$

Solving the Marginal Probabilities

	D	R	Marginal
<30	.2	.1	.3
$30 \leq a \leq 50$.15	.15	.3
>50	.1	.3	.4
Marginal	.45	.55	1.0

$$
\begin{aligned}
.2+x+.1 & =.45 \\
x+y & =.3 \\
.1+z & =.4
\end{aligned}
$$

$z=.4-.1=.3$

What if age and party were independent?

	D	R	Marginal
<30			.3
$30 \leq a \leq 50$.3
>50			.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135		.3
$30 \leq a \leq 50$.3
>50			.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135	.165	.3
$30 \leq a \leq 50$.3
>50			.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135	.165	.3
$30 \leq a \leq 50$.135		.3
>50			.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135	.165	.3
$30 \leq a \leq 50$.135	.165	.3
>50			.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135	.165	.3
$30 \leq a \leq 50$.135	.165	.3
>50	.18		.4
Marginal	.45	.55	1.0

What if age and party were independent?

	D	R	Marginal
<30	.135	.165	.3
$30 \leq a \leq 50$.135	.165	.3
>50	.18	.22	.4
Marginal	.45	.55	1.0

Expected Value

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

Expected Value

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

$$
35 \cdot \frac{1}{38}+-1 \frac{37}{38}=
$$

Expected Value

In Las Vegas the roulette wheel has a 0 and a 00 and then the numbers 1 to 36 marked on equal slots; the wheel is spun and a ball stops randomly in one slot. When a player bets 1 dollar on a number, he receives 36 dollars if the ball stops on this number, for a net gain of 35 dollars; otherwise, he loses his dollar bet. Find the expected value for his winnings.

$$
\begin{equation*}
35 \cdot \frac{1}{38}+-1 \frac{37}{38}=-0.052 \tag{1}
\end{equation*}
$$

Expected Value

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

Expected Value

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

$$
1 \cdot \frac{18}{38}-1 \cdot \frac{20}{38}=
$$

Expected Value

In a second version of roulette in Las Vegas, a player bets on red or black. Half of the numbers from 1 to 36 are red, and half are black. If a player bets a dollar on black, and if the ball stops on a black number, he gets his dollar back and another dollar. If the ball stops on a red number or on 0 or 00 he loses his dollar. Find the expected winnings for this bet.

$$
\begin{equation*}
1 \cdot \frac{18}{38}-1 \cdot \frac{20}{38}=-0.052 \tag{2}
\end{equation*}
$$

Is Entropy Non-negative?

We know that

$$
\begin{equation*}
\log p(x) \leq 0 \tag{3}
\end{equation*}
$$

Is Entropy Non-negative?

We know that

$$
\begin{equation*}
\log p(x) \leq 0 \tag{3}
\end{equation*}
$$

ff $0 \leq x \leq 1$. Thus,

$$
\begin{equation*}
-\log p(x)>0 \tag{4}
\end{equation*}
$$

Is Entropy Non-negative?

We know that

$$
\begin{equation*}
\log p(x) \leq 0 \tag{3}
\end{equation*}
$$

ff $0 \leq x \leq 1$. Thus,

$$
\begin{equation*}
-\log p(x)>0 \tag{4}
\end{equation*}
$$

And multiplying by a non-negative probability means

$$
\begin{equation*}
-p(x) \log p(x) \geq 0 \tag{5}
\end{equation*}
$$

so their sum is non-negative.

