Clustering

Data Science: Jordan Boyd-Graber University of Maryland
SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Clustering

Questions:

- how do we fit clusters?
- how many clusters should we use?
- how should we evaluate model fit?

K-Means

How do we fit the clusters?

- simplest method: K-means
- requires: real-valued data
- idea:
- pick K initial cluster means
- associate all points closest to mean k with cluster k
- use points in cluster k to update mean for that cluster
- re-associate points closest to new mean for k with cluster k
- use new points in cluster k to update mean for that cluster
- ...
\square stop when no change between updates

K-Means

Animation at:

http://shabal.in/visuals/kmeans/1.html

K-Means: Example

Data:

x_{1}	x_{2}
0.4	-1.0
-1.0	-2.2
-2.4	-2.2
-1.0	-1.9
-0.5	0.6
-0.1	1.7
1.2	3.3
3.1	1.6
1.3	1.6
2.0	0.8

K-Means: Example

Pick K centers (randomly):

K-Means: Example

Calculate distance between points and those centers:

x_{1}	x_{2}	$(-1,-1)$	$(0,0)$
0.4	-1.0	1.4	1.1
-1.0	-2.2	1.2	2.4
-2.4	-2.2	1.9	3.3
-1.0	-1.9	0.9	2.2
-0.5	0.6	1.6	0.8
-0.1	1.7	2.9	1.7
1.2	3.3	4.8	3.5
3.1	1.6	4.8	3.4
1.3	1.6	3.5	2.1
2.0	0.8	3.5	2.2

K-Means: Example
Choose mean with smaller distance:

x_{1}	x_{2}	$(-1,-1)$	$(0,0)$
0.4	-1.0	1.4	$\mathbf{1 . 1}$
-1.0	-2.2	$\mathbf{1 . 2}$	2.4
-2.4	-2.2	$\mathbf{1 . 9}$	3.3
-1.0	-1.9	$\mathbf{0 . 9}$	2.2
-0.5	0.6	1.6	$\mathbf{0 . 8}$
-0.1	1.7	2.9	$\mathbf{1 . 7}$
1.2	3.3	4.8	$\mathbf{3 . 5}$
3.1	1.6	4.8	$\mathbf{3 . 4}$
1.3	1.6	3.5	$\mathbf{2 . 1}$
2.0	0.8	3.5	$\mathbf{2 . 2}$

K-Means: Example

New clusters:

K-Means: Example

Refit means for each cluster:

- cluster $1:(-1.0,-2.2)$, (-2.4,-2.2), (-1.0,-1.9)
- new mean: $(-1.5,-2.1)$
- cluster 2: $(0.4,-1.0),(-0.5,0.6)$, $(-0.1,1.7),(1.2,3.3),(3.1,1.6)$, (1.3, 1.6), (2.0, 0.8)
- new mean: (1.0,1.2)

K-Means: Example

Recalculate distances for each cluster:

x_{1}	x_{2}	$(-1.5,-2.1)$	$(1.0,1.2)$
0.4	-1.0	2.2	2.3
-1.0	-2.2	0.5	4.0
-2.4	-2.2	1.0	4.9
-1.0	-1.9	0.5	3.8
-0.5	0.6	2.8	1.7
-0.1	1.7	4.1	1.2
1.2	3.3	6.0	2.1
3.1	1.6	5.8	2.0
1.3	1.6	4.6	0.5
2.0	0.8	4.6	1.1

K-Means: Example
Choose mean with smaller distance:

x_{1}	x_{2}	$(-1.5,-2.1)$	$(1.0,1.2)$
0.4	-1.0	$\mathbf{2 . 2}$	2.3
-1.0	-2.2	$\mathbf{0 . 5}$	4.0
-2.4	-2.2	$\mathbf{1 . 0}$	4.9
-1.0	-1.9	$\mathbf{0 . 5}$	3.8
-0.5	0.6	2.8	$\mathbf{1 . 7}$
-0.1	1.7	4.1	$\mathbf{1 . 2}$
1.2	3.3	6.0	$\mathbf{2 . 1}$
3.1	1.6	5.8	$\mathbf{2 . 0}$
1.3	1.6	4.6	$\mathbf{0 . 5}$
2.0	0.8	4.6	$\mathbf{1 . 1}$

K-Means: Example

New clusters:

K-Means: Example

Refit means for each cluster:

- cluster 1: (0.4,-1.0), (-1.0,-2.2), (-2.4,-2.2), (-1.0,-1.9)
- new mean: ($-1.0,-1.8$)
- cluster 2: $(-0.5,0.6),(-0.1,1.7)$, (1.2,3.3), (3.1, 1.6), (1.3, 1.6), (2.0,0.8)
- new mean: $(1.2,1.6)$

K-Means: Example

Recalculate distances for each cluster:

x_{1}	x_{2}	$(-1.0,-1.8)$	$(1.2,1.6)$
0.4	-1.0	1.6	2.7
-1.0	-2.2	0.4	4.4
-2.4	-2.2	1.5	5.2
-1.0	-1.9	0.1	4.1
-0.5	0.6	2.4	2.0
-0.1	1.7	3.6	1.2
1.2	3.3	5.6	1.7
3.1	1.6	5.3	1.9
1.3	1.6	4.1	0.1
2.0	0.8	4.0	1.2

K-Means: Example

Select smallest distance and compare these clusters with previous:

Table: New Clusters

x_{1}	x_{2}	$(-1.0,-1.8)$	$(1.2,1.6)$
0.4	-1.0	$\mathbf{1 . 6}$	2.7
-1.0	-2.2	$\mathbf{0 . 4}$	4.4
-2.4	-2.2	$\mathbf{1 . 5}$	5.2
-1.0	-1.9	$\mathbf{0 . 1}$	4.1
-0.5	0.6	2.4	$\mathbf{2 . 0}$
-0.1	1.7	3.6	$\mathbf{1 . 2}$
1.2	3.3	5.6	$\mathbf{1 . 7}$
3.1	1.6	5.3	$\mathbf{1 . 9}$
1.3	1.6	4.1	$\mathbf{0 . 1}$
2.0	0.8	4.0	$\mathbf{1 . 2}$

Table: Old Clusters

$(-1.5,-2.1)$	$(1.0,1.2)$
2.2	2.3
0.5	4.0
1.0	4.9
0.5	3.8
2.8	1.7
4.1	$\mathbf{1 . 2}$
6.0	2.1
5.8	2.0
4.6	$\mathbf{0 . 5}$
4.6	$\mathbf{1 . 1}$

K-Means in Practice

K-means can be used for image segmentation

- partition image into multiple
 segments
- find boundaries of objects
- make art

K-Means Clustering

What if our data look like this?

K-Means Clustering

True clustering:

K-Means Clustering

K-means clustering ($K=2$):

