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Linear Regression

Examples of linear regression:
= given a child’s age and gender, what is his/her height?

= given unemployment, inflation, number of wars, and economic growth,
what will the president’s approval rating be?

= given a browsing history, how long will a user stay on a page?
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Multiple Covariates

Often, we have a vector of inputs where each represents a different feature
of the data
X=(X1,...,Xp)

The function fitted to the response is a linear combination of the covariates

p
() =Fo+ DBy
j=1
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Multiple Covariates

Often, it is convenient to represent x as (1, x;,...,Xp)

In this case x is a vector, and so is 3 (we’ll represent them in bold face)

This is the dot product between these two vectors

This then becomes a sum (this should be familiar!)

p
Bx=Po+ > Bx;
j=1
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Hyperplanes: Linear Functions in Multiple Dimensions
Hyperplane
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Covariates

= Do not need to be raw value of x4, X, ...

= Can be any feature or function of the data:
Transformations like x, = log(x; ) or x, = cos(x;)
Basis expansions like X, = X2, X3 = x3, x, = x{, etc
Indicators of events like x, = 1({_1<x <1}

Interactions between variables like x3 = x; x>

o o o o

= Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Prediction

= After finding ﬁ we would like to predict an output value for a new set of

covariates
= We just find the point on the line that corresponds to the new input:
y=Po+Pix (1)
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Prediction

= After finding ﬁ we would like to predict an output value for a new set of
covariates

= We just find the point on the line that corresponds to the new input:
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Prediction

= After finding ﬁ we would like to predict an output value for a new set of
covariates
= We just find the point on the line that corresponds to the new input:

7=1.0+0.5%5 (1)
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Prediction

= After finding ﬁ we would like to predict an output value for a new set of
covariates
= We just find the point on the line that corresponds to the new input:
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Example: Old Faithful
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Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption
given the duration of the current eruption
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