Probability Distributions: Multinomial and Poisson

Data Science: Jordan Boyd-Graber
University of Maryland
JANUARY 21, 2018

Multinomial distribution

- Recall: the binomial distribution is the number of successes from multiple Bernoulli success/fail events
- The multinomial distribution is the number of different outcomes from multiple categorical events
- It is a generalization of the binomial distribution to more than two possible outcomes
- As with the binomial distribution, each categorical event is assumed to be independent
- Bernoulli : binomial :: categorical : multinomial
- Examples:
- The number of times each face of a die turned up after 50 rolls
- The number of times each suit is drawn from a deck of cards after 10 draws

Multinomial distribution

- Notation: let \vec{X} be a vector of length K, where X_{k} is a random variable that describes the number of times that the k th value was the outcome out of N categorical trials.
- The possible values of each X_{k} are integers from 0 to N
- All X_{k} values must sum to $N: \sum_{k=1}^{K} X_{k}=N$
- Example: if we roll a die 10 times, suppose it comes up with the following values:

$$
\vec{x}=\langle 1,0,3,2,1,3\rangle
$$

$$
\begin{aligned}
& x_{1}=1 \\
& X_{2}=0 \\
& x_{3}=3 \\
& x_{4}=2 \\
& x_{5}=1 \\
& x_{6}=3
\end{aligned}
$$

- The multinomial distribution is a joint distribution over multiple random variables: $P\left(X_{1}, X_{2}, \ldots, X_{K}\right)$

Multinomial distribution

- Suppose we roll a die 3 times. There are $216\left(6^{3}\right)$ possible outcomes:

$$
\begin{array}{rll}
P(111) & =P(1) P(1) P(1) & =0.00463 \\
P(112) & =P(1) P(1) P(2) & =0.00463 \\
P(113) & =P(1) P(1) P(3) & =0.00463 \\
P(114) & =P(1) P(1) P(4) & =0.00463 \\
P(115) & =P(1) P(1) P(5) & =0.00463 \\
P(116) & =P(1) P(1) P(6) & =0.00463 \\
\ldots & \ldots & \ldots \\
P(665) & =P(6) P(6) P(5) & =0.00463 \\
P(666) & =P(6) P(6) P(6) & =0.00463
\end{array}
$$

- What is the probability of a particular vector of counts after 3 rolls?

Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\vec{X}=\langle 0,1,0,0,2,0\rangle$

Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\vec{X}=\langle 0,1,0,0,2,0\rangle$
- $P(\vec{X})=P(255)+P(525)+P(552)=0.01389$

Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\vec{X}=\langle 0,1,0,0,2,0\rangle$
- $P(\vec{X})=P(255)+P(525)+P(552)=0.01389$
- Example 2: $\vec{X}=\langle 0,0,1,1,1,0\rangle$

Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: $\vec{X}=\langle 0,1,0,0,2,0\rangle$
- $P(\vec{X})=P(255)+P(525)+P(552)=0.01389$
- Example 2: $\vec{X}=\langle 0,0,1,1,1,0\rangle$
- $P(\vec{X})=P(345)+P(354)+P(435)+P(453)+P(534)+P(543)=0.02778$

Multinomial distribution

- The probability mass function for the multinomial distribution is:
- Like categorical distribution, multinomial has a K-length parameter vector $\vec{\theta}$ encoding the probability of each outcome.
- Like binomial, the multinomial distribution has a additional parameter N, which is the number of events.

Multinomial distribution: summary

- Categorical distribution is multinomial when $N=1$.
- Sampling from a multinomial: same code repeated N times.
- Remember that each categorical trial is independent.
- Question: Does this mean the count values (i.e., each X_{1}, X_{2}, etc.) are independent?

Multinomial distribution: summary

- Categorical distribution is multinomial when $N=1$.
- Sampling from a multinomial: same code repeated N times.
- Remember that each categorical trial is independent.
- Question: Does this mean the count values (i.e., each X_{1}, X_{2}, etc.) are independent?
- No! If $N=3$ and $X_{1}=2$, then X_{2} can be no larger than 1 (must sum to N).

Multinomial distribution: summary

- Categorical distribution is multinomial when $N=1$.
- Sampling from a multinomial: same code repeated N times.
- Remember that each categorical trial is independent.
- Question: Does this mean the count values (i.e., each X_{1}, X_{2}, etc.) are independent?
- No! If $N=3$ and $X_{1}=2$, then X_{2} can be no larger than 1 (must sum to N).
- Remember this analogy:
- Bernoulli : binomial :: categorical : multinomial

Poisson distribution

- We showed that the Bernoulli/binomial/categorical/multinomial are all related to each other
- Lastly, we will show something a little different
- The Poisson distribution gives the probability that an event will occur a certain number of times within a time interval
- Examples:
- The number of goals in a soccer match
- The amount of mail received in a day
- The number of times a river will flood in a decade

Poisson distribution

- Let the random variable X refer to the count of the number of events over whatever interval we are modeling.
- X can be any positive integer or zero: $\{0,1,2, \ldots\}$
- The probability mass function for the Poisson distribution is:

$$
f(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}
$$

- The Poisson distribution has one parameter λ, which is the average number of events in an interval.
- $\mathbb{E}[X]=\lambda$

Poisson distribution

Poisson distribution

- Example: Poisson is good model of World Cup match having a certain number of goals
- A World Cup match has an average of 2.5 goals scored: $\lambda=2.5$
- $\quad P(X=0)=\frac{2.5^{0} e^{-2.5}}{0!}=\frac{e^{-2.5}}{1}=0.082$
- $P(X=1)=\frac{2.5^{1} e^{-2.5}}{!!}=\frac{2.5 e^{-2.5}}{1}=0.205$
- $P(X=2)=\frac{2.5^{2} e^{-e^{2.5}}}{2!}=\frac{6.25 e^{-2.5}}{2}=0.257$
- $P(X=3)=\frac{2.5^{3} e^{-2.5}}{3!}=\frac{15.625 e^{-2.5}}{6}=0.213$
- $P(X=4)=\frac{2.5^{4} e^{-2.5}}{4!}=\frac{39.0625 e^{-2.5}}{24}=0.133$
- $P(X=10)=\frac{2.5^{10} e^{-2.5}}{10!}=\frac{9536.7432-e^{-2.5}}{3628800}=0.00022$

