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Binomial distribution

� Bernoulli: distribution over two values (success or failure) from a single
event

� binomial: number of successes from multiple Bernoulli events
� Examples:
� The number of times “heads” comes up after flipping a coin 10 times
� The number of defective TVs in a line of 10,000 TVs

� Important: each Bernoulli event is assumed to be independent
� Notation: let X be a random variable that describes the number of

successes out of N trials.
� The possible values of X are integers from 0 to N: {0,1,2, . . . ,N}
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Binomial distribution

� Suppose we flip a coin 3 times. There are 8 possible outcomes:

P(HHH) = P(H)P(H)P(H) = 0.125

P(HHT ) = P(H)P(H)P(T ) = 0.125

P(HTH) = P(H)P(T )P(H) = 0.125

P(HTT ) = P(H)P(T )P(T ) = 0.125

P(THH) = P(T )P(H)P(H) = 0.125

P(THT ) = P(T )P(H)P(T ) = 0.125

P(TTH) = P(T )P(T )P(H) = 0.125

P(TTT ) = P(T )P(T )P(T ) = 0.125

� What is the probability of landing heads x times during these 3 flips?
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Binomial distribution

� What is the probability of landing heads x times during these 3 flips?
� 0 times:
� P(TTT )= 0.125

� 1 time:
� P(HTT )+P(THT )+P(TTH)= 0.375

� 2 times:
� P(HHT )+P(HTH)+P(THH)= 0.375

� 3 times:
� P(HHH)= 0.125
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Binomial distribution

� The probability mass function for the binomial distribution is:

f (x) =

�

N

x

�

︸︷︷︸

“N choose x”

θ x(1−θ )N−x

� Like the Bernoulli, the binomial parameter θ is the probability of success
from one event.

� Binomial has second parameter N: number of trials.

� The PMF important: difficult to figure out the entire distribution by hand.
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Aside: Binomial coefficients

� The expression (n
k) is called a

binomial coefficient.
� Also called a combination in

combinatorics.

� (n
k) is the number of ways to choose k

elements from a set of n elements.

� For example, the number of ways to
choose 2 heads from 3 coin flips:
HHT, HTH, THH
(3

2) = 3

� Formula: �

n

k

�

=
n!

k!(n− k)!

Pascal’s triangle depicts the
values of (n

k).
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Bernoulli vs Binomial

� A Bernoulli distribution is a special case of the binomial distribution
when N = 1.

� For this reason, sometimes the term binomial is used to refer to a
Bernoulli random variable.
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Example

� Probability that a coin lands heads at least once during 3 flips?
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Example

� Probability that a coin lands heads at least once during 3 flips?

P(X ≥ 1)
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Example

� Probability that a coin lands heads at least once during 3 flips?

P(X ≥ 1) = P(X = 1)+P(X = 2)+P(X = 3)

= 0.375+0.375+0.125= 0.875
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Categorical distribution

� Recall: the Bernoulli distribution is a distribution over two values
(success or failure)

� categorical distribution generalizes Bernoulli distribution over any
number of values
� Rolling a die
� Selecting a card from a deck

� AKA discrete distribution.
� Most general type of discrete distribution
� specify all (but one) of the probabilities in the distribution
� rather than the probabilities being determined by the probability mass

function.
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Categorical distribution

� If the categorical distribution is over K possible outcomes, then the
distribution has K parameters.

� We will denote the parameters with a K -dimensional vector ~θ .

� The probability mass function can be written as:

f (x) =
K
∏

k=1

θ
[x=k]
k

where the expression [x = k ] evaluates to 1 if the statement is true and
0 otherwise.
� All this really says is that the probability of outcome x is equal to θx .

� The number of free parameters is K −1, since if you know K −1 of the
parameters, the K th parameter is constrained to sum to 1.
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Categorical distribution

� Example: the roll of a (unweighted) die

P(X = 1) = 1
6

P(X = 2) = 1
6

P(X = 3) = 1
6

P(X = 4) = 1
6

P(X = 5) = 1
6

P(X = 6) = 1
6

� If all outcomes have equal probability, this is called the uniform
distribution.

� General notation: P(X = x) = θx
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Sampling from a categorical distribution

� How to randomly select a value distributed according to a categorical
distribution?

� The idea is similar to randomly selected a Bernoulli-distributed value.
� Algorithm:

1. Randomly generate a number between 0 and 1
r = random(0, 1)

2. For k = 1, . . . ,K :

� Return smallest r s.t. r <
∑k

i=1 θk
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Sampling from a categorical distribution

� Example: simulating the roll of a die

P(X = 1) = θ1 = 0.166667

P(X = 2) = θ2 = 0.166667

P(X = 3) = θ3 = 0.166667

P(X = 4) = θ4 = 0.166667

P(X = 5) = θ5 = 0.166667

P(X = 6) = θ6 = 0.166667

Random number in (0,1):
r = 0.452383

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?

� Return X = 3
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Sampling from a categorical distribution

� Example 2: rolling a biased die

P(X = 1) = θ1 = 0.01

P(X = 2) = θ2 = 0.01

P(X = 3) = θ3 = 0.01

P(X = 4) = θ4 = 0.01

P(X = 5) = θ5 = 0.01

P(X = 6) = θ6 = 0.95

Random number in (0,1):
r = 0.209581

r <θ1?
r <θ1 +θ2?
r <θ1 +θ2 +θ3?
r <θ1 +θ2 +θ3 +θ4?
r <θ1 +θ2 +θ3 +θ4 +θ5?
r <θ1+θ2+θ3+θ4+θ5+θ6?

� Return X = 6

� We will always return X = 6 unless our random number r < 0.05.
� 6 is the most probable outcome
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