Binomial and Discrete Distributions

Data Science: Jordan Boyd-Graber University of Maryland
JANUARY 18, 2018

Binomial distribution

- Bernoulli: distribution over two values (success or failure) from a single event
- binomial: number of successes from multiple Bernoulli events
- Examples:
- The number of times "heads" comes up after flipping a coin 10 times
- The number of defective TVs in a line of 10,000 TVs
- Important: each Bernoulli event is assumed to be independent
- Notation: let X be a random variable that describes the number of successes out of N trials.
- The possible values of X are integers from 0 to $N:\{0,1,2, \ldots, N\}$

Binomial distribution

- Suppose we flip a coin 3 times. There are 8 possible outcomes:

$$
\begin{aligned}
& P(H H H)=P(H) P(H) P(H)=0.125 \\
& P(H H T)=P(H) P(H) P(T)=0.125 \\
& P(H T H)=P(H) P(T) P(H)=0.125 \\
& P(H T T)=P(H) P(T) P(T)=0.125 \\
& P(T H H)=P(T) P(H) P(H)=0.125 \\
& P(T H T)=P(T) P(H) P(T)=0.125 \\
& P(T T H)=P(T) P(T) P(H)=0.125 \\
& P(T T T)=P(T) P(T) P(T)=0.125
\end{aligned}
$$

- What is the probability of landing heads x times during these 3 flips?

Binomial distribution

- What is the probability of landing heads x times during these 3 flips?
- 0 times:
- $P(T T T)=0.125$
- 1 time:
- $P(H T T)+P(T H T)+P(T T H)=0.375$
- 2 times:
- $P(H H T)+P(H T H)+P(T H H)=0.375$
- 3 times:
- $P(H H H)=0.125$

Binomial distribution

- The probability mass function for the binomial distribution is:

$$
f(x)=\underbrace{\binom{N}{x}}_{\text {"N choose } x "} \theta^{x}(1-\theta)^{N-x}
$$

- Like the Bernoulli, the binomial parameter θ is the probability of success from one event.
- Binomial has second parameter N : number of trials.
- The PMF important: difficult to figure out the entire distribution by hand.

Aside: Binomial coefficients

- The expression $\binom{n}{k}$ is called a binomial coefficient.
- Also called a combination in combinatorics.
- $\binom{n}{k}$ is the number of ways to choose k elements from a set of n elements.
- For example, the number of ways to choose 2 heads from 3 coin flips: HHT, HTH, THH
$\binom{3}{2}=3$
- Formula:

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Pascal's triangle depicts the values of $\binom{n}{k}$.

Bernoulli vs Binomial

- A Bernoulli distribution is a special case of the binomial distribution when $N=1$.
- For this reason, sometimes the term binomial is used to refer to a Bernoulli random variable.

Example

- Probability that a coin lands heads at least once during 3 flips?

Example

- Probability that a coin lands heads at least once during 3 flips?

$$
P(X \geq 1)
$$

Example

- Probability that a coin lands heads at least once during 3 flips?

$$
\begin{aligned}
P(X \geq 1)= & P(X=1)+P(X=2)+P(X=3) \\
& =0.375+0.375+0.125=0.875
\end{aligned}
$$

Categorical distribution

- Recall: the Bernoulli distribution is a distribution over two values (success or failure)
- categorical distribution generalizes Bernoulli distribution over any number of values
- Rolling a die
- Selecting a card from a deck
- AKA discrete distribution.
- Most general type of discrete distribution
- specify all (but one) of the probabilities in the distribution
- rather than the probabilities being determined by the probability mass function.

Categorical distribution

- If the categorical distribution is over K possible outcomes, then the distribution has K parameters.
- We will denote the parameters with a K-dimensional vector $\vec{\theta}$.
- The probability mass function can be written as:

$$
f(x)=\prod_{k=1}^{K} \theta_{k}^{[x=k]}
$$

where the expression $[x=k$] evaluates to 1 if the statement is true and 0 otherwise.

- All this really says is that the probability of outcome x is equal to θ_{x}.
- The number of free parameters is $K-1$, since if you know $K-1$ of the parameters, the K th parameter is constrained to sum to 1 .

Categorical distribution

- Example: the roll of a (unweighted) die

$$
\begin{aligned}
& P(X=1)=\frac{1}{6} \\
& P(X=2)=\frac{1}{6} \\
& P(X=3)=\frac{1}{6} \\
& P(X=4)=\frac{1}{6} \\
& P(X=5)=\frac{1}{6} \\
& P(X=6)=\frac{1}{6}
\end{aligned}
$$

- If all outcomes have equal probability, this is called the uniform distribution.
- General notation: $P(X=x)=\theta_{x}$

Sampling from a categorical distribution

- How to randomly select a value distributed according to a categorical distribution?
- The idea is similar to randomly selected a Bernoulli-distributed value.
- Algorithm:

1. Randomly generate a number between 0 and 1

$$
r=\operatorname{random}(0,1)
$$

2. For $k=1, \ldots, K$:

- Return smallest r s.t. $r<\sum_{i=1}^{k} \theta_{k}$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.166667 \\
P(X=2) & =\theta_{2}=0.166667 \\
P(X=3) & =\theta_{3}=0.166667 \\
P(X=4) & =\theta_{4}=0.166667 \\
P(X=5) & =\theta_{5}=0.166667 \\
P(X=6) & =\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.166667 \\
P(X=2) & =\theta_{2}=0.166667 \\
P(X=3) & =\theta_{3}=0.166667 \\
P(X=4) & =\theta_{4}=0.166667 \\
P(X=5) & =\theta_{5}=0.166667 \\
P(X=6) & =\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.166667 \\
P(X=2) & =\theta_{2}=0.166667 \\
P(X=3) & =\theta_{3}=0.166667 \\
P(X=4) & =\theta_{4}=0.166667 \\
P(X=5) & =\theta_{5}=0.166667 \\
P(X=6) & =\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
& P(X=1)=\theta_{1}=0.166667 \\
& P(X=2)=\theta_{2}=0.166667 \\
& P(X=3)=\theta_{3}=0.166667 \\
& P(X=4)=\theta_{4}=0.166667 \\
& P(X=5)=\theta_{5}=0.166667 \\
& P(X=6)=\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{array}{lll}
P(X=1)=\theta_{1}=0.166667 & r=0.452383 \\
P(X=2)=\theta_{2}=0.166667 & r<\theta_{1} ? \\
P(X=3)=\theta_{3}=0.166667 & r<\theta_{1}+\theta_{2} ? \\
P(X=4)=\theta_{4}=0.166667 & r<\theta_{1}+\theta_{2}+\theta_{3} ? \\
P(X=5)=\theta_{5}=0.166667 & \\
P(X=6)=\theta_{6}=0.166667 &
\end{array}
$$

Random number in (0,1):

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{array}{lll}
P(X=1)=\theta_{1}=0.166667 & r=0.452383 \\
P(X=2)=\theta_{2}=0.166667 & r<\theta_{1} ? \\
P(X=3)=\theta_{3}=0.166667 & r<\theta_{1}+\theta_{2} ? \\
P(X=4)=\theta_{4}=0.166667 & r<\theta_{1}+\theta_{2}+\theta_{3} ? \\
P(X=5)=\theta_{5}=0.166667 & \text { ■ Return } X=3 \\
P(X=6)=\theta_{6}=0.166667 &
\end{array}
$$

Random number in (0,1):

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.166667 \\
P(X=2) & =\theta_{2}=0.166667 \\
P(X=3) & =\theta_{3}=0.166667 \\
P(X=4) & =\theta_{4}=0.166667 \\
P(X=5) & =\theta_{5}=0.166667 \\
P(X=6) & =\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{array}{lll}
P(X=1)=\theta_{1}=0.166667 & \text { Random number in }(0,1): \\
P(X=2)=\theta_{2}=0.166667 & r=0.117544 \\
P(X=3)=\theta_{3}=0.166667 & \\
P(X=4)=\theta_{4}=0.166667 & \\
P(X=5)=\theta_{5}=0.166667 & \\
P(X=6)=\theta_{6}=0.166667 &
\end{array}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.166667 \\
P(X=2) & =\theta_{2}=0.166667 \\
P(X=3) & =\theta_{3}=0.166667 \\
P(X=4) & =\theta_{4}=0.166667 \\
P(X=5) & =\theta_{5}=0.166667 \\
P(X=6) & =\theta_{6}=0.166667
\end{aligned}
$$

Sampling from a categorical distribution

- Example: simulating the roll of a die

$$
\begin{array}{lll}
P(X=1)=\theta_{1}=0.166667 & \text { Random number in }(0,1): \\
P(X=2)=\theta_{2}=0.166667 & r=0.117544 \\
P(X=3)=\theta_{3}=0.166667 & r<\theta_{1} ? \\
P(X=4)=\theta_{4}=0.166667 & \text { - Return } X=1 \\
P(X=5)=\theta_{5}=0.166667 & \\
P(X=6)=\theta_{6}=0.166667 &
\end{array}
$$

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Sampling from a categorical distribution

- Example 2: rolling a biased die

Random number in $(0,1)$: $r=0.209581$

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$: $r=0.209581$
$r<\theta_{1}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$: $r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$: $r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$:
$r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$:
$r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$:
$r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}+\theta_{6}$?

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
P(X=1) & =\theta_{1}=0.01 \\
P(X=2) & =\theta_{2}=0.01 \\
P(X=3) & =\theta_{3}=0.01 \\
P(X=4) & =\theta_{4}=0.01 \\
P(X=5) & =\theta_{5}=0.01 \\
P(X=6) & =\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$:
$r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}+\theta_{6}$?

- Return $X=6$

Sampling from a categorical distribution

- Example 2: rolling a biased die

$$
\begin{aligned}
& P(X=1)=\theta_{1}=0.01 \\
& P(X=2)=\theta_{2}=0.01 \\
& P(X=3)=\theta_{3} \quad=0.01 \\
& P(X=4)=\theta_{4}=0.01 \\
& P(X=5)=\theta_{5} \quad=0.01 \\
& P(X=6)=\theta_{6}=0.95
\end{aligned}
$$

Random number in $(0,1)$: $r=0.209581$
$r<\theta_{1}$?
$r<\theta_{1}+\theta_{2}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}$?
$r<\theta_{1}+\theta_{2}+\theta_{3}+\theta_{4}+\theta_{5}+\theta_{6}$?

- Return $X=6$
- We will always return $X=6$ unless our random number $r<0.05$.
- 6 is the most probable outcome

