Discrete Probability Distributions

Data Science: Jordan Boyd-Graber
University of Maryland
JANUARY 18, 2018

Refresher: Random variables

- Random variables take on values in a sample space.
- This week we will focus on discrete random variables:
- Coin flip: $\{H, T\}$
- Number of times a coin lands heads after N flips: $\{0,1,2, \ldots, N\}$
- Number of words in a document: Positive integers $\{1,2, \ldots\}$
- Reminder: we denote the random variable with a capital letter; denote a outcome with a lower case letter.
- E.g., X is a coin flip, x is the value (H or T) of that coin flip.

Refresher: Discrete distributions

- A discrete distribution assigns a probability to every possible outcome in the sample space
- For example, if X is a coin flip, then

$$
\begin{aligned}
& P(X=H)=0.5 \\
& P(X=T)=0.5
\end{aligned}
$$

- Probabilities have to be greater than or equal to 0 and probabilities over the entire sample space must sum to one

$$
\sum_{x} P(X=x)=1
$$

Mathematical Conventions

$$
n^{0}
$$

Example for 3:

$$
\begin{align*}
3^{2} & =9 \tag{1}\\
3^{1} & =3 \tag{2}\\
3^{-1} & =\frac{1}{3} \tag{3}
\end{align*}
$$

Mathematical Conventions

$$
n^{0}
$$

Example for 3:

$$
\begin{align*}
3^{2} & =9 \tag{1}\\
3^{1} & =3 \tag{2}\\
3^{0} & =1 \tag{3}\\
3^{-1} & =\frac{1}{3} \tag{4}
\end{align*}
$$

Today: Types of discrete distributions

- There are many different types of discrete distributions, with different definitions.
- Today we'll look at the most common discrete distributions.
- And we'll introduce the concept of parameters.
- These discrete distributions (along with the continuous distributions next) are fundamental
- Regression, classification, and clustering

Bernoulli distribution

- A distribution over a sample space with two values: $\{0,1\}$
- Interpretation: 1 is "success"; 0 is "failure"
- Example: coin flip (we let 1 be "heads" and 0 be "tails")
- A Bernoulli distribution can be defined with a table of the two probabilities:
- X denotes the outcome of a coin flip:

$$
\begin{aligned}
& P(X=0)=0.5 \\
& P(X=1)=0.5
\end{aligned}
$$

- X denotes whether or not a TV is defective:

$$
\begin{aligned}
& P(X=0)=0.995 \\
& P(X=1)=0.005
\end{aligned}
$$

Bernoulli distribution

- Do we need to write out both probabilities?

$$
\begin{aligned}
& P(X=0)=0.995 \\
& P(X=1)=0.005
\end{aligned}
$$

- What if I only told you $P(X=1)$? Or $P(X=0)$?

Bernoulli distribution

- Do we need to write out both probabilities?

$$
\begin{aligned}
& P(X=0)=0.995 \\
& P(X=1)=0.005
\end{aligned}
$$

- What if I only told you $P(X=1)$? Or $P(X=0)$?

$$
\begin{aligned}
& P(X=0)=1-P(X=1) \\
& P(X=1)=1-P(X=0)
\end{aligned}
$$

- We only need one probability to define a Bernoulli distribution
- Usually the probability of success, $P(X=1)$.

Bernoulli distribution

Another way of writing the Bernoulli distribution:

- Let θ denote the probability of success $(0 \leq \theta \leq 1)$.

$$
\begin{aligned}
& P(X=0)=1-\theta \\
& P(X=1)=\theta
\end{aligned}
$$

- An even more compact way to write this:

$$
P(X=x)=\theta^{x}(1-\theta)^{1-x}
$$

- This is called a probability mass function.

Probability mass functions

- A probability mass function (PMF) is a function that assigns a probability to every outcome of a discrete random variable X.
- Notation: $f(x)=P(X=x)$
- Compact definition
- Example: PMF for Bernoulli random variable $X \in\{0,1\}$

$$
f(x)=\theta^{x}(1-\theta)^{1-x}
$$

- In this example, θ is called a parameter.

Parameters

- Define the probability mass function
- Free parameters not constrained by the PMF.
- For example, the Bernoulli PMF could be written with two parameters:

$$
f(x)=\theta_{1}^{x} \theta_{2}^{1-x}
$$

But $\theta_{2} \equiv 1-\theta_{1} \ldots$ only 1 free parameter.

- The complexity \approx number of free parameters. Simpler models have fewer parameters.

Sampling from a Bernoulli distribution

- How to randomly generate a value distributed according to a Bernoulli distribution?
- Algorithm:

1. Randomly generate a number between 0 and 1
$r=\operatorname{random}(0,1)$
2. If $r<\theta$, return success

Else, return failure

