Language Models

Data Science: Jordan Boyd-Graber University of Maryland
SLIDES ADAPTED FROM PHILIP KOEHN

Language models

- Language models answer the question: How likely is a string of English words good English?
- Autocomplete on phones and websearch
- Creating English-looking documents
- Very common in machine translation systems
- Help with reordering / style

$$
p_{\mathrm{Im}}(\text { the house is small })>p_{\mathrm{Im}}(\text { small the is house })
$$

- Help with word choice

$$
p_{\mathrm{lm}}(\mathrm{I} \text { am going home })>p_{\mathrm{lm}}(\mathrm{I} \text { am going house })
$$

- Use conditional probabilities

N-Gram Language Models

- Given: a string of English words $W=w_{1}, w_{2}, w_{3}, \ldots, w_{n}$
- Question: what is $p(W)$?
- Sparse data: Many good English sentences will not have been seen before
\rightarrow Decomposing $p(W)$ using the chain rule:

$$
\begin{aligned}
& p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right)= \\
& \quad p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \ldots p\left(w_{n} \mid w_{1}, w_{2}, \ldots w_{n-1}\right)
\end{aligned}
$$

(not much gained yet, $p\left(w_{n} \mid w_{1}, w_{2}, \ldots w_{n-1}\right)$ is equally sparse)

Markov Chain

- Markov independence assumption:
- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
$\rightarrow k$ th order Markov model
- For instance 2-gram language model:

$$
p\left(w_{1}, w_{2}, w_{3}, \ldots, w_{n}\right) \simeq p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{2}\right) \ldots p\left(w_{n} \mid w_{n-1}\right)
$$

- What is conditioned on, here w_{i-1} is called the history
- How do we estimate these probabilities?

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

How do we estimate a probability?

- Suppose we want to estimate $P\left(w_{n}=\right.$ "home" $\left.\mid h=g o\right)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

- Maximum likelihood (ML) estimate of the probability is:

$$
\begin{equation*}
\hat{\theta}_{i}=\frac{n_{i}}{\sum_{k} n_{k}} \tag{1}
\end{equation*}
$$

Example: 3-Gram

- Counts for trigrams and estimated word probabilities the red (total: 225)

word	c.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
\rightarrow maximum likelihood probability is $\frac{123}{225}=0.547$.

Example: 3-Gram

- Counts for trigrams and estimated word probabilities the red (total: 225)

word	c.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
\rightarrow maximum likelihood probability is $\frac{123}{225}=0.547$.
- Is this reasonable?

The problem with maximum likelihood estimates: Zeros

- If there were no occurrences of "bageling" in a history go, we'd get a zero estimate:

$$
\hat{P}(\text { "bageling" } \mid \text { go })=\frac{T_{\text {go, "bageling" }}}{\sum_{w^{\prime} \in V} T_{g o, w^{\prime}}}=0
$$

- \rightarrow We will get $P($ gold $)=0$ for any sentence that contains go bageling!
- Zero probabilities cannot be conditioned away.

Add-One Smoothing

- Equivalent to assuming a uniform prior over all possible distributions over the next word (you'll learn why later)
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
- 86,700 distinct words
- $86,700^{2}=7,516,890,000$ possible bigrams
- but only about 30,000,000 words (and bigrams) in corpus

