

Language Models

Data Science: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM PHILIP KOEHN

Language models

- Language models answer the question: How likely is a string of English words good English?
- Autocomplete on phones and websearch
- Creating English-looking documents
- Very common in machine translation systems
 - Help with reordering / style

 p_{Im} (the house is small) > p_{Im} (small the is house)

Help with word choice

 $p_{lm}(l \text{ am going home}) > p_{lm}(l \text{ am going house})$

Use conditional probabilities

N-Gram Language Models

- Given: a string of English words $W = w_1, w_2, w_3, ..., w_n$
- Question: what is p(W)?
- Sparse data: Many good English sentences will not have been seen before
- \rightarrow Decomposing p(W) using the chain rule:

$$p(w_1, w_2, w_3, ..., w_n) = p(w_1) p(w_2|w_1) p(w_3|w_1, w_2) \dots p(w_n|w_1, w_2, ..., w_{n-1})$$

(not much gained yet, $p(w_n|w_1, w_2, ..., w_{n-1})$ is equally sparse)

Markov Chain

Markov independence assumption:

- only previous history matters
- limited memory: only last k words are included in history (older words less relevant)
- → *k*th order Markov model
- For instance 2-gram language model:

$$p(w_1, w_2, w_3, ..., w_n) \simeq p(w_1) p(w_2|w_1) p(w_3|w_2)...p(w_n|w_{n-1})$$

- What is conditioned on, here w_{i-1} is called the history
- How do we estimate these probabilities?

How do we estimate a probability?

• Suppose we want to estimate $P(w_n = \text{``home''}|h = g_0)$.

How do we estimate a probability?

• Suppose we want to estimate $P(w_n = \text{``home''}|h = g_0)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

How do we estimate a probability?

• Suppose we want to estimate $P(w_n = \text{``home''}|h = g_0)$.

home	home	big	with	to
big	with	to	and	money
and	home	big	and	home
money	home	and	big	to

Maximum likelihood (ML) estimate of the probability is:

$$\hat{\theta}_i = \frac{n_i}{\sum_k n_k} \tag{1}$$

Example: 3-Gram

Counts for trigrams and estimated word probabilities

word	C.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

the red (total: 225)

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.

Example: 3-Gram

Counts for trigrams and estimated word probabilities

word	C.	prob.
cross	123	0.547
tape	31	0.138
army	9	0.040
card	7	0.031
,	5	0.022

the red (total: 225)

- 225 trigrams in the Europarl corpus start with the red
- 123 of them end with cross
- \rightarrow maximum likelihood probability is $\frac{123}{225} = 0.547$.
- Is this reasonable?

The problem with maximum likelihood estimates: Zeros

If there were no occurrences of "bageling" in a history go, we'd get a zero estimate:

$$\hat{P}(\text{"bageling"}|g_{O}) = \frac{T_{g_{O},\text{"bageling"}}}{\sum_{w' \in V} T_{g_{O},w'}} = 0$$

- \rightarrow We will get $P(g \circ | d) = 0$ for any sentence that contains go bageling!
- Zero probabilities cannot be conditioned away.

Add-One Smoothing

- Equivalent to assuming a uniform prior over all possible distributions over the next word (you'll learn why later)
- But there are many more unseen n-grams than seen n-grams
- Example: Europarl 2-bigrams:
 - 86,700 distinct words
 - $86,700^2 = 7,516,890,000$ possible bigrams
 - but only about 30,000,000 words (and bigrams) in corpus