

Data Science: Jordan Boyd-Graber

University of Maryland

SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Data Science: Jordan Boyd-Graber | UMD Conditional Probability | 1 / 1

Context

- Data science is often worried about "if-then" questions
 - If my e-mail looks like this, is it spam?
 - If I buy this stock, will my portfolio improve?
- Since data science uses the language of probabilities, we need conditional probabilities (continuing probability intro)
- Also need to combine distributions

The conditional probability of event A given event B is the probability of A when B is known to occur.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The conditional probability of event A given event B is the probability of A when B is known to occur.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The conditional probability of event A given event B is the probability of A when B is known to occur.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The *conditional probability* of event *A* given event *B* is the probability of *A* when *B* is known to occur,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The *conditional probability* of event A given event B is the probability of A when B is known to occur,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

The *conditional probability* of event A given event B is the probability of A when B is known to occur,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Independence (Reminder)

Random variables X and Y are independent if and only if P(X = x, Y = y) = P(X = x)P(Y = y). How does this interact with conditional probabilities?

Conditional probabilities equal unconditional probabilities with independence:

- P(X = x | Y) = P(X = x)
- Knowing Y tells us nothing about X

Example

What is the probability that the sum of two dice is six given that the first is greater than three?

Data Science: Jordan Boyd-Graber | UMD Conditional Probability | 5 / 1

Example

- A ≡ First die
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
		3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- A ≡ First die
- $B \equiv$ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
		3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

Example

- $A \equiv \text{First die}$
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) =$$

 $P(A > 3) =$
 $P(A > 3 \mid B + A = 6) =$

Example

- $A \equiv \text{First die}$
- B ≡ Second die

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	4	5	6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

 $P(A > 3) =$
 $P(A > 3 | B + A = 6) =$

Example

- $A \equiv \text{First die}$
- $B \equiv Second die$

	B=1	B=2	B=3	B=4	B=5	B=6
A=1	2	3	3 4		6	7
A=2	3	4	5	6	7	8
A=3	4	5	6	7	8	9
A=4	5	6	7	8	9	10
A=5	6	7	8	9	10	11
A=6	7	8	9	10	11	12

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

$$P(A > 3) = \frac{3}{6}$$

$$P(A > 3 \mid B + A = 6) =$$

Example

- $A \equiv \text{First die}$
- B ≡ Second die

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

	B=1	B=2	B=3	B=4	B=5	B=6	$B(4 > 2) = \frac{3}{2}$
A=1	2	3	4	5	6	7	$- \qquad P(A > 3) = \frac{3}{6}$
A=2	3	4	5	6	7	8	2 2 4
A=3	4	5	6	7	8	9	$P(A > 3 B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{3}$
A=4	5	6	7	8	9	10	6
A=5	6	7	8	9	10	11	
A=6	7	8	9	10	11	12	

Example

- $A \equiv \text{First die}$
- B ≡ Second die

$$P(A > 3 \cap B + A = 6) = \frac{2}{36}$$

	B=1	B=2	B=3	B=4	B=5	B=6	$P(A > 3) = \frac{3}{6}$
A=1	2	3	4	5	6	7	0
A=2	3	4	5	6	7	8	$P(A > 3 B + A = 6) = \frac{\frac{2}{36}}{\frac{3}{6}} = \frac{2}{36} \frac{6}{3}$
A=3	4	5	6	7	8	9	$F(A > 5 B + A = 0) = \frac{3}{\frac{3}{6}} = \frac{36}{36} = \frac{3}{3}$
A=4	5	6	7	8	9	10	1
A=5	6	7	8	9	10	11	$=\frac{1}{9}$
A=6	7	8	9	10	11	12	Ť

Combining Distributions

- Somtimes distributions you have aren't what you need
 - □ Conditional → joint (chain)
 - Reverse conditional direction (Bayes')

The chain rule

 The definition of conditional probability lets us derive the chain rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$

The chain rule

 The definition of conditional probability lets us derive the chain rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$
$$= P(X|Y)P(Y)$$

The chain rule

The definition of conditional probability lets us derive the chain rule, which let's us define the joint distribution as a product of conditionals:

$$P(X,Y) = P(X,Y)\frac{P(Y)}{P(Y)}$$
$$= P(X|Y)P(Y)$$

- For example, let Y be a disease and X be a symptom. We may know P(X|Y) and P(Y) from data. Use the chain rule to obtain the probability of having the disease and the symptom.
- In general, for any set of *N* variables

$$P(X_1,...,X_N) = \prod_{n=1}^N P(X_n|X_1,...,X_{n-1})$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- Change outcome space from B to Ω
- Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω
- 3. Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- 2. Change outcome space from B to Ω : P(A|B)P(B)
- 3. Change outcome space again from Ω to A

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 1. Start with P(A|B)
- Change outcome space from B to Ω : P(A|B)P(B)
- Change outcome space again from Ω to A: $\frac{P(A|B)P(B)}{P(A)}$

