# Expectations and Entropy 

Data Science: Jordan Boyd-Graber<br>University of Maryland<br>SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

## Expectation

An expectation of a random variable is a weighted average:

$$
\begin{aligned}
\mathrm{E}[f(X)] & =\sum_{x} f(x) p(x) \\
& =\int_{-\infty}^{\infty} f(x) p(x) d x
\end{aligned}
$$

## Expectation

Expectations of constants or known values:

- $\mathrm{E}[a]=a$


## Expectation Intuition

- $\mathrm{E}[x]$ is most common expectation
- Average outcome (might not be an event: 2.4 children)
- Center of mass


V

## Expectation of die / dice

What is the expectation of the roll of die?

## Expectation of die / dice

What is the expectation of the roll of die?
One die
$1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=$

## Expectation of die / dice

What is the expectation of the roll of die?
One die
$1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5$

## Expectation of die / dice

What is the expectation of the roll of die?
One die
$1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5$
What is the expectation of the sum of two dice?

## Expectation of die / dice

What is the expectation of the roll of die?
One die
$1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5$
What is the expectation of the sum of two dice?
Two die
$2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+4 \cdot \frac{3}{36}+5 \cdot \frac{4}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36}+8 \cdot \frac{5}{36}+9 \cdot \frac{4}{36}+10 \cdot \frac{3}{36}+11 \cdot \frac{2}{36}+12 \cdot \frac{1}{36}=$

## Expectation of die / dice

What is the expectation of the roll of die?
One die
$1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5$
What is the expectation of the sum of two dice?
Two die
$2 \cdot \frac{1}{36}+3 \cdot \frac{2}{36}+4 \cdot \frac{3}{36}+5 \cdot \frac{4}{36}+6 \cdot \frac{5}{36}+7 \cdot \frac{6}{36}+8 \cdot \frac{5}{36}+9 \cdot \frac{4}{36}+10 \cdot \frac{3}{36}+11 \cdot \frac{2}{36}+12 \cdot \frac{1}{36}=7$

## Entropy

- Measure of disorder in a system
- In the real world, entroy in a system tends to increase
- Can also be applied to probabilities:
- Is one (or a few) outcomes certain (low entropy)
- Are things equiprobable (high entropy)
- In data science
- We look for features that allow us to reduce entropy (decision trees)
- All else being equal, we seek models that have maximum entropy (Occam's razor)



## Aside: Logarithms

$$
\lg (1)=0
$$

$$
\lg (2)=1
$$



- $\lg (x)=b \Leftrightarrow 2^{b}=x$
- Makes big numbers small
- Way to think about them: cutting a $\lg (4)=2$
 carrot
$\lg (8)=3$



## Aside: Logarithms

$$
\lg (1)=0
$$

$$
\lg (2)=1
$$

- $\lg (x)=b \Leftrightarrow 2^{b}=x$
- Makes big numbers small
- Way to think about them: cutting a carrot
$\lg (4)=2$

- Negative numbers?

$$
\lg (8)=3
$$



## Aside: Logarithms

- $\lg (x)=b \Leftrightarrow 2^{b}=x$

- Makes big numbers small
- Way to think about them: cutting a carrot

$$
\lg (4)=2
$$



- Negative numbers?
- Non-integers?

$$
\lg (8)=3
$$



## Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$
\begin{align*}
H(X) & =-\mathrm{E}[\lg (p(X))] \\
& =-\sum_{x} p(x) \lg (p(x))  \tag{discrete}\\
& =-\int_{-\infty}^{\infty} p(x) \lg (p(x)) d x
\end{align*} \quad \text { (discrete) }
$$

## Entropy

Entropy is a measure of uncertainty that is associated with the distribution of a random variable:

$$
\begin{align*}
H(X) & =-\mathrm{E}[\lg (p(X))] \\
& =-\sum_{x} p(x) \lg (p(x))  \tag{discrete}\\
& =-\int_{-\infty}^{\infty} p(x) \lg (p(x)) d x
\end{align*}
$$

(continuous)

Does not account for the values of the random variable, only the spread of the distribution.

- $H(X) \geq 0$
- uniform distribution $=$ highest entropy, point mass $=$ lowest
- suppose $P(X=1)=p, P(X=0)=1-p$ and

$$
P(Y=100)=p, P(Y=0)=1-p: X \text { and } Y \text { have the same entropy }
$$

## Wrap up

- Probabilities are the language of data science
- You'll need to manipulate probabilities and understand marginalization and independence
- In Class: Working through probability examples
- Next: Conditional probabilities

