Marginalization and Independence

Data Science: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM DAVE BLEI AND LAUREN HANNAH

Marginalization

If we know a joint distribution of multiple variables, what if we want to know the distribution of only one of the variables?

We can compute the distribution of $P(X)$ from $P(X, Y, Z)$ through marginalization:

$$
\sum_{y} \sum_{z} P(X=x, Y=y, Z=z)=P(X)
$$

Marginalization

If we know a joint distribution of multiple variables, what if we want to know the distribution of only one of the variables?

We can compute the distribution of $P(X)$ from $P(X, Y, Z)$ through marginalization:

$$
\sum_{y} \sum_{z} P(X=x, Y=y, Z=z)=P(X)
$$

We'll explain this notation more next week for now the formula is the most important part.

Marginalization (from Leyton-Brown)

Joint distribution			
temperature (T) and weather (W)			
	$\mathrm{T}=\mathrm{Hot}$	T=Mild	T=Cold
W=Sunny	. 10	. 20	. 10
W=Cloudy	. 05	. 35	. 20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalization (from Leyton-Brown)

Joint distribution			
temperature (T) and weather (W)			
	T=Hot	T=Mild	T=Cold
W=Sunny	. 10	. 20	. 10
W=Cloudy	. 05	. 35	. 20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1
- Marginalize out weather

$$
\text { T=Hot } \quad \text { T=Mild } \quad \text { T=Cold }
$$

- Marginalize out temperature

Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)			
	$\mathrm{T}=$ Hot	$\mathrm{T}=$ Mild	$\mathrm{T}=$ Cold
$\mathrm{W}=$ Sunny	.10	.20	.10
$\mathrm{~W}=$ Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1
- Marginalize out weather

$$
\text { T=Hot } \quad \text { T=Mild } \quad \text { T=Cold }
$$

- Marginalize out temperature

Marginalization (from Leyton-Brown)

l			
Joint distribution			
temperature (T) and weather (W)			
	$\mathrm{T}=$ Hot	$\mathrm{T}=$ Mild	$\mathrm{T}=$ Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1
- Marginalize out weather

- Marginalize out temperature

Marginalization (from Leyton-Brown)

l			
Joint distribution			
temperature (T) and weather (W)			
	$\mathrm{T}=$ Hot	$\mathrm{T}=$ Mild	$\mathrm{T}=$ Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Corresponds to summing out a table dimension
- New table still sums to 1
- Marginalize out weather

T=Hot	T=Mild	T=Cold
.15	.55	.30

- Marginalize out temperature

Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Marginalize out weather

T=Hot	T=Mild	$\mathrm{T}=$ Cold
.15	.55	.30

- Marginalize out temperature W=Sunny
W=Cloudy
- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Marginalize out weather

T=Hot	T=Mild	$\mathrm{T}=$ Cold
.15	.55	.30

- Marginalize out temperature W=Sunny
W=Cloudy
- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Marginalize out weather

$\mathrm{T}=$ Hot	$\mathrm{T}=$ Mild	$\mathrm{T}=$ Cold
.15	.55	.30

- Marginalize out temperature W=Sunny . 40
W=Cloudy
- Corresponds to summing out a table dimension
- New table still sums to 1

Marginalization (from Leyton-Brown)

Joint distribution

temperature (T) and weather (W)

	T=Hot	T=Mild	T=Cold
W=Sunny	.10	.20	.10
W=Cloudy	.05	.35	.20

Marginalization allows us to compute distributions over smaller sets of variables:

- $P(X, Y)=\sum_{z} P(X, Y, Z=z)$
- Marginalize out weather

T=Hot	T=Mild	$\mathrm{T}=$ Cold
.15	.55	.30

- Marginalize out temperature W=Sunny . 40
W=Cloudy . 60
- Corresponds to summing out a table dimension
- New table still sums to 1

Independence

Random variables X and Y are independent if and only if $P(X=x, Y=y)=P(X=x) P(Y=y)$.
Mathematical examples:

- If I flip a coin twice, is the second outcome independent from the first outcome?

Independence

Random variables X and Y are independent if and only if $P(X=x, Y=y)=P(X=x) P(Y=y)$.
Mathematical examples:

- If I flip a coin twice, is the second outcome independent from the first outcome?
- If I draw two socks from my (multicolored) laundry, is the color of the first sock independent from the color of the second sock?

Independence

Intuitive Examples:

- Independent:
- you use a Mac / the Green Line is on schedule
- snowfall in the Himalayas / your favorite color is blue

Independence

Intuitive Examples:

- Independent:
- you use a Mac / the Green Line is on schedule
- snowfall in the Himalayas / your favorite color is blue
- Not independent:
- you vote for Larry Hogan / you are a Republican
- there is a traffic jam Baltimore / there's a home game

Independence

Sometimes we make convenient assumptions.

- the values of two dice (ignoring gravity!)
- the value of the first die and the sum of the values
- whether it is raining and the number of taxi cabs
- whether it is raining and the amount of time it takes me to hail a cab
- the first two words in a sentence

