Ranking

Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 16
Roadmap

- Combining rankings: taking advantage of multiple weak rankers
- Maximum margin ranking: support vector machines
- Reduction to classification: optimizing
Ranking

- Web search (Google uses > 200 features)
- Movie rankings
- Dating
Plan
An Efficient Boosting Algorithm for Combining Preferences

- Feedback function: \(\Phi : X \times X \mapsto \mathbb{R} \)
 - \(\phi(x_0, x_1) > 0: x_1 \text{ is preferred to } x_0 \)
 - \(\phi(x_0, x_1) < 0: x_0 \text{ is preferred to } x_1 \)
 - \(\phi(x_0, x_1) = 0: \text{ no preference} \)

- Want to learn distribution \(D(x_0, x_1) \equiv c \cdot \max\{0, \Phi(x_0, x_1)\} \) s.t.
 \[
 \sum_{x, x'} D(x, x') = 1 \quad (1)
 \]
What’s the goal?

- Minimize the number of misranked pairs under final ranking

\[\sum_{x,x'} D(x, x') \cdot 1[H(x') \leq H(x)] = \Pr_{(x,y) \sim D}[H(y) \leq H(x)] \quad (2) \]

- Choose entries with high weight in \(D \) to be *important* (can’t get them wrong)
What’s the input

- Weak rankings of the form $h_t : X \mapsto \mathbb{R}$
- Could be different systems / users / feature sets
- Will combine them into a final ranking of the same form
What’s a weak ranking?

- A function of the form

\[h(x) = \begin{cases}
1 & \text{if } f_i(x) > \theta \\
0 & \text{if } f_i(x) \leq \theta \\
q_{\text{def}} & \text{if } f_i(x) == \bot
\end{cases} \] (3)
What’s a weak ranking?

- A function of the form

\[
h(x) = \begin{cases}
1 & \text{if } f_i(x) > \theta \\
0 & \text{if } f_i(x) \leq \theta \\
q_{\text{def}} & \text{if } f_i(x) == \bot
\end{cases}
\]

(3)

- How to find \(q_{\text{def}} \) and \(\theta \)?
- Binary search over how much it improves ranking implied by \(D \) (i.e., gets high \(D \) weights right)
Algorithm

- **Initialize** D_1
- **For** $t = 1 \ldots T$:
 - Get weak ranking $h_t : \mathcal{X} \mapsto \mathbb{R}$
 - Choose α_t
 - Update distribution

\[
D_{t+1}(x, y) \propto D_t(x, y) \cdot \exp \{ \alpha_t [h_t(x) - h_t(y)] \} \tag{4}
\]

- Final ranking is

\[
H(x) = \sum_{1}^{T} \alpha_t h_t(x) \tag{5}
\]
Learning rate

- α_t encodes importance of individual weak learner
- In general decreases over iterations
- Find weighted discrepancy

$$ r = \sum_{x, y} D(x, y) [h(y) - h(x)] $$

- Use $\alpha = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$
Learning rate

- α_t encodes importance of individual weak learner
- In general decreases over iterations
- Find weighted discrepancy
 \[r = \sum_{x,y} D(x, y) [h(y) - h(x)] \] (6)
- Use $\alpha = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$
- As r gets smaller, weak learner t will have lower weight
Performance

- Works better than individual features or nearest neighbor
Plan
Examples as feature vectors

Every example has a feature vector $f(x)$

<table>
<thead>
<tr>
<th>example</th>
<th>docID</th>
<th>query</th>
<th>cosine score</th>
<th>ω</th>
<th>judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ_1</td>
<td>37</td>
<td>linux operating system</td>
<td>0.032</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_2</td>
<td>37</td>
<td>penguin logo</td>
<td>0.02</td>
<td>4</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>Φ_3</td>
<td>238</td>
<td>operating system</td>
<td>0.043</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_4</td>
<td>238</td>
<td>runtime environment</td>
<td>0.004</td>
<td>2</td>
<td>nonrelevant</td>
</tr>
<tr>
<td>Φ_5</td>
<td>1741</td>
<td>kernel layer</td>
<td>0.022</td>
<td>3</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_6</td>
<td>2094</td>
<td>device driver</td>
<td>0.03</td>
<td>2</td>
<td>relevant</td>
</tr>
<tr>
<td>Φ_7</td>
<td>3191</td>
<td>device driver</td>
<td>0.027</td>
<td>5</td>
<td>nonrelevant</td>
</tr>
</tbody>
</table>
Maximum Margin Ranking

Turning features to rank

- Have a series of “levels” or ranks $y = 1 \ldots$
- We want to find a function to separate examples

$$f(x) \equiv \langle w \cdot \phi(x) \rangle$$ \hspace{1cm} (7)
Maximizing the margin
Using SVM-light

• Each example has a rank
• and a query id
• and lots of features
Using SVM-light

query 1
3 qid:1 1:1 2:1 3:0 4:0.2 5:0
2 qid:1 1:0 2:0 3:1 4:0.1 5:1
1 qid:1 1:0 2:1 3:0 4:0.4 5:0
1 qid:1 1:0 2:0 3:1 4:0.3 5:0

query 2
1 qid:2 1:0 2:0 3:1 4:0.2 5:0
2 qid:2 1:1 2:0 3:1 4:0.4 5:0
1 qid:2 1:0 2:0 3:1 4:0.1 5:0
1 qid:2 1:0 2:0 3:1 4:0.2 5:0

query 3
2 qid:3 1:0 2:0 3:1 4:0.1 5:1
3 qid:3 1:1 2:1 3:0 4:0.3 5:0
4 qid:3 1:1 2:0 3:0 4:0.4 5:1
1 qid:3 1:0 2:1 3:1 4:0.5 5:0
Classification and Other Objectives

Plan
Are all pairs important?

- Often we care about the top of the result list
- Regression (as in previous section) not robust when there’s one right answer and many wrong ones
- Measured by the **AUC**: area under the curve
 - Imagine two classes: winners and losers
 - We want there to be a consecutive run of winners before losers in the results (extends to greater number of classes)
 - Want to minimize probability of losers before winners in an ordering \(\pi \) on a set of examples \(S = (x_1, y_1) \ldots \)

\[
l(\pi, S) = \frac{\sum_{i \neq j} 1 \left[y_i > y_j \right] \pi(x_i, x_j)}{\sum_{i < j} 1 \left[y_i \neq y_j \right]} \tag{8}
\]
Classification and Other Objectives

roc curve

![ROC Curve with AUC](image)
Reduction to Classification

Robust Reductions from Ranking to Classification

- Produces a ranking using a classifier
- If regret of classifier is r, loss of classifier is at most $2r$
- Thus, if binary error rate is 20% due to inherent noise and 5% due to errors made by the classifier
- Then AUC regret is at most 10%
Algorithm

- Learn a classifier
 - Given a random pair of examples, learn a classifier c to predict whether it should prefer x_1 to x_2
 - Return the classifier c
- Get a ranking from the resulting classifier tournament
 - For an example x, define the degree
 \[\text{deg}(x) = |\{x' : c(x, x') == 1, x' \in U\}| \] (9)
 - Sort by the degree of the node (number of matches it won)
Efficiency

- For ranking a large list, complexity $O(n^2)$ is unacceptable.
- Possible to use variant of QuickSort $O(n \log n)$.
- Has the same regret performance, but is randomized.
Training Preference Classifier

- How do you balance positive and negative classes?
- Requires cross-validation: try many options on held out data
- Weighting positive classes is important:
 - Some frameworks allow you to weight examples
 - In other cases, you can just duplicate positive
Recap

- Ranking is an important problem
- Multiple approaches
 - Combining weak rankers
 - Max-margin
 - Tournament classification