Boosting

Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 12
Content Questions
Administrivia Questions
Boosting Example

- x_0, x_1, x_2
- x_3, x_4
- x_5, x_6
- x_7, x_8
- x_9

Jordan Boyd-Graber
| Boulder

| Boosting | 4 of 14 |
Hypothesis 1

- Find the best weak learner weighted by D_1
Hypothesis 1

- Find the best weak learner weighted by D_1
- Return 1.0 if x_1 is less than 2.0, -1.0 otherwise
Iteration 1

- Error: \(\epsilon_1 = \sum_{i=1}^{m} D_1(i) \mathbb{1}[y_i \neq h_1(x_i)] \)
Iteration 1

- Error: $\epsilon_1 = \sum_{i=1}^{m} D_1(i) 1[y_i \neq h_1(x_i)]$

$$\epsilon_1 = 0.105 = 0.10$$ (1)
Iteration 1

- Error: $\epsilon_1 = \sum_{i=1}^{m} D_1(i) \mathbb{1} [y_i \neq h_1(x_i)]$

 $\epsilon_1 = 0.105 = 0.10$ \hfill (1)

- $\alpha_1 = \frac{1}{2} \ln \left(\frac{1-\epsilon_1}{\epsilon_1} \right)$
Iteration 1

- **Error:** $\epsilon_1 = \sum_{i=1}^{m} D_1(i) 1[y_i \neq h_1(x_i)]$

 $$\epsilon_1 = 0.105 = 0.10$$ \hspace{1cm} (1)

- $\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_1}{\epsilon_1} \right) = 1.10$

- **Update distribution:** $D_2(i) \propto D_1(i) \exp(-\alpha_1 y_i h_1(x_i))$
Iteration 1

- Error: \(\epsilon_1 = \sum_{i=1}^{m} D_1(i) 1[y_i \neq h_1(x_i)] \)

\[\epsilon_1 = 0.105 = 0.10 \]

(1)

- \(\alpha_1 = \frac{1}{2} \ln \left(\frac{1-\epsilon_1}{\epsilon_1} \right) = 1.10 \)

- Update distribution: \(D_2(i) \propto D_1(i) \exp(-\alpha_1 y_i h_1(x_i)) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.50</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Distribution 2
Hypothesis 2

- Find the best learner weighted by D_2
- Return 1.0 if x_0 is greater than -2.0, -1.0 otherwise
Iteration 2

- Error: $\epsilon_2 = \sum_{i=1}^{m} D_2(i) \mathbb{1}[y_i \neq h_2(x_i)]$
Iteration 2

- **Error:**
 \[\epsilon_2 = \sum_{i=1}^{m} D_2(i) 1 \left[y_i \neq h_2(x_i) \right] \]

 \[\epsilon_2 = 0.061 + 0.062 + 0.069 = 0.17 \] (2)
Iteration 2

- **Error:** \(\epsilon_2 = \sum_{i=1}^{m} D_2(i) \mathbb{1} [y_i \neq h_2(x_i)] \)

\[
\epsilon_2 = 0.061 + 0.062 + 0.069 = 0.17 \quad (2)
\]

- \(\alpha_2 = \frac{1}{2} \ln \left(\frac{1-\epsilon_2}{\epsilon_2} \right) \)
Iteration 2

- **Error:** $\epsilon_2 = \sum_{i=1}^{m} D_2(i) \mathbb{1} [y_i \neq h_2(x_i)]$

 \[\epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17 \] (2)

- $\alpha_2 = \frac{1}{2} \ln \left(\frac{1-\epsilon_2}{\epsilon_2} \right) = 0.80$

- **Update distribution:** $D_3(i) \propto D_2(i) \exp(-\alpha_2 y_i h_2(x_i))$
Iteration 2

- **Error**: \(\epsilon_2 = \sum_{i=1}^{m} D_2(i) \cdot 1 [y_i \neq h_2(x_i)] \)

 \[
 \epsilon_2 = 0.06_1 + 0.06_2 + 0.06_9 = 0.17 \quad (2)
 \]

- \(\alpha_2 = \frac{1}{2} \ln \left(\frac{1-\epsilon_2}{\epsilon_2} \right) = 0.80 \)

- **Update distribution**: \(D_3(i) \propto D_2(i) \exp(-\alpha_2 y_i h_2(x_i)) \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.03</td>
<td>0.17</td>
<td>0.17</td>
<td>0.03</td>
<td>0.03</td>
<td>0.30</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Distribution 3
Hypothesis 3

- Find the best learner weighted by D_3
- Return 1.0 if x_1 is less than -0.5, -1.0 otherwise
Iteration 3

• Error: \(\epsilon_3 = \sum_{i=1}^{m} D_3(i) 1[y_i \neq h_3(x_i)] \)
Iteration 3

- Error: \[\epsilon_3 = \sum_{i=1}^{m} D_3(i)1[y_i \neq h_3(x_i)] \]

\[\epsilon_3 = 0.033 + 0.034 + 0.036 = 0.10 \] (3)
Iteration 3

- Error: $\epsilon_3 = \sum_{i=1}^{m} D_3(i) 1[y_i \neq h_3(x_i)]$

\[
\epsilon_3 = 0.03_3 + 0.03_4 + 0.03_6 = 0.10
\] \hspace{1cm} (3)

- $\alpha_3 = \frac{1}{2} \ln \left(\frac{1-\epsilon_3}{\epsilon_3} \right)$
Iteration 3

- Error: \(\epsilon_3 = \sum_{i=1}^{m} D_3(i) \mathbb{1}[y_i \neq h_3(x_i)] \)

\[
\epsilon_3 = 0.033 + 0.034 + 0.036 = 0.10
\]

- \(\alpha_3 = \frac{1}{2} \ln \left(\frac{1-\epsilon_3}{\epsilon_3} \right) = 1.10 \)

- Update distribution: \(D_4(i) \propto D_3(i) \exp(-\alpha_3 y_i h_3(x_i)) \)
Iteration 3

- Error: \(\epsilon_3 = \sum_{i=1}^{m} D_3(i) \mathbb{1}[y_i \neq h_3(x_i)]\)

\[
\epsilon_3 = 0.033 + 0.034 + 0.036 = 0.10
\]

(3)

- \(\alpha_3 = \frac{1}{2} \ln \left(\frac{1-\epsilon_3}{\epsilon_3} \right) = 1.10\)

- Update distribution: \(D_4(i) \propto D_3(i) \exp(-\alpha_3 y_i h_3(x_i))\)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.02</td>
<td>0.09</td>
<td>0.09</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.02</td>
<td>0.02</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Classifier
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \]

- \(H(x_0) = \)

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \]

(4)
Final Predictions

\[H(x) = \text{sign} \left(\sum_{t} \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \[H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \]
- \[H(x_1) = \]
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_{t} \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \(H(x_0) = \text{sign}(-1.10 - 0.80 - 1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 - 1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 - 1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \text{sign}(1.10 + 0.80 - 1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_4) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \]

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \] (4)

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_5) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0 \)
- \(H(x_6) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \]

- \[H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \]
- \[H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \]
- \[H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \]
- \[H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \]
- \[H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \]
- \[H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0 \]
- \[H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \]
- \[H(x_7) = \]
Final Predictions

\[H(x) = \text{sign} \left(\sum_{t} \alpha_t h_t(x) \right) \] (4)

- \(H(x_0) = \text{sign}(-1.10 - 0.80 - 1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 - 1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 - 1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \text{sign}(1.10 + 0.80 - 1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_4) = \text{sign}(1.10 + 0.80 - 1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_5) = \text{sign}(1.10 - 0.80 - 1.10) = \text{sign}(-0.80) = -1.0 \)
- \(H(x_6) = \text{sign}(1.10 + 0.80 - 1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0 \)
- \(H(x_8) = \)
Final Predictions

\[H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \] \hspace{1cm} (4)

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0 \)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0 \)
- \(H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0 \)
- \(H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0 \)
- \(H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0 \)
- \(H(x_8) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0 \)
- \(H(x_9) = \)
Final Predictions

\[
H(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right) \tag{4}
\]

- \(H(x_0) = \text{sign}(-1.10 + -0.80 + -1.10) = \text{sign}(-3.00) = -1.0\)
- \(H(x_1) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0\)
- \(H(x_2) = \text{sign}(-1.10 + 0.80 + -1.10) = \text{sign}(-1.39) = -1.0\)
- \(H(x_3) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0\)
- \(H(x_4) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0\)
- \(H(x_5) = \text{sign}(1.10 + -0.80 + -1.10) = \text{sign}(-0.80) = -1.0\)
- \(H(x_6) = \text{sign}(1.10 + 0.80 + -1.10) = \text{sign}(0.80) = 1.0\)
- \(H(x_7) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0\)
- \(H(x_8) = \text{sign}(1.10 + 0.80 + 1.10) = \text{sign}(3.00) = 1.0\)
- \(H(x_9) = \text{sign}(1.10 + -0.80 + 1.10) = \text{sign}(1.39) = 1.0\)