Solving SVMs (SMO Algorithms)

Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 9A
Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap
Lagrange Multipliers

Introduce Lagrange variables $\alpha_i \geq 0$, $i \in [1, m]$ for each of the m constraints (one for each data point).

$$\mathcal{L}(w, b, \alpha) = \frac{1}{2}||w||^2 - \sum_{i=1}^{m} \alpha_i [y_i(w \cdot x_i + b) - 1] \quad (1)$$
Solving Lagrangian

Weights

$$\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i$$ (2)
Solving Lagrangian

Weights

\[\tilde{\mathbf{w}} = \sum_{i=1}^{m} \alpha_i y_i \tilde{x}_i \]

(2)

Bias

\[0 = \sum_{i=1}^{m} \alpha_i y_i \]

(3)
Dual Objective

Solving Lagrangian

Weights

\[\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \]

(2)

Bias

\[0 = \sum_{i=1}^{m} \alpha_i y_i \]

(3)

Support Vector-ness

\[\alpha_i = 0 \vee y_i (w \cdot x_i + b) \leq 1 \]

(4)
Reparameterize in terms of α

$$\max_{\vec{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_i \alpha_j y_i y_j (\vec{x}_i \cdot \vec{x}_j)$$

(5)
Strawman: Coordinate Descent

- Why not optimize one coordinate α_i at a time?
Strawman: Coordinate Descent

• Why not optimize one coordinate α_i at a time?
• Constraints!
• So we’ll just minimize pairs (α_i, α_j) at a time
Outline for SVM Optimization (SMO)

1. Select two examples i, j
2. Get a learning rate η
3. Update α_j
4. Update α_i
Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap
Contrast with SG

- There’s a learning rate η that depends on the data
- Use the error of an example to derive update
- You update multiple α at once
Contrast with SG

- There’s a learning rate η that depends on the data
- Use the error of an example to derive update
- You update multiple α at once: if one goes up, the other should go down because $\sum y_i \alpha_i = 0$
More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we’ve converged?
More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we’ve converged?

$$\alpha_i = 0 \Rightarrow y_i(w \cdot x_i + b) \geq 1$$ \hspace{1cm} (6)

$$\alpha_i = C \Rightarrow y_i(w \cdot x_i + b) \leq 1$$ \hspace{1cm} (7)

$$0 < \alpha_i < C \Rightarrow y_i(w \cdot x_i + b) = 1$$ \hspace{1cm} (8)

(Karush-Kuhn-Tucker Conditions)
More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we've converged?

\[
\alpha_i = 0 \implies y_i(w \cdot x_i + b) \geq 1 \tag{6}
\]
\[
\alpha_i = C \implies y_i(w \cdot x_i + b) \leq 1 \tag{7}
\]
\[
0 < \alpha_i < C \implies y_i(w \cdot x_i + b) = 1 \tag{8}
\]

(Karush-Kuhn-Tucker Conditions)

- Keep checking (to some tolerance)
Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap
Step 1: Select i and j

- Find some $i \in \{1, \ldots, m\}$ that violates KKT
- Choose j randomly from $m - 1$ other options
- You can do better (particularly for large datasets)
- Repeat until KKT conditions are met
Step 2: Optimize α_j

1. Compute upper (H) and lower (L) bounds that ensure $0 < \alpha_j \leq C$.

<table>
<thead>
<tr>
<th>$y_i \neq y_j$</th>
<th>$y_i = y_j$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = \max(0, \alpha_j - \alpha_i)$ (9)</td>
<td>$L = \max(0, \alpha_i + \alpha_j - C)$ (11)</td>
</tr>
<tr>
<td>$H = \min(C, C + \alpha_j - \alpha_i)$ (10)</td>
<td>$H = \min(C, \alpha_j + \alpha_i)$ (12)</td>
</tr>
</tbody>
</table>
1. Compute upper (H) and lower (L) bounds that ensure $0 < \alpha_j \leq C$.

$$y_i \neq y_j$$

- $$L = \max(0, \alpha_j - \alpha_i)$$ \hspace{1cm} (9)
- $$H = \min(C, C + \alpha_j - \alpha_i)$$ \hspace{1cm} (10)

This is because the update for α_i is based on $y_i y_j$ (sign matters)

$$y_i = y_j$$

- $$L = \max(0, \alpha_i + \alpha_j - C)$$ \hspace{1cm} (11)
- $$H = \min(C, \alpha_j + \alpha_i)$$ \hspace{1cm} (12)
Step 2: Optimize α_j

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k$$ (13)
The Algorithm

Step 2: Optimize α_j

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k$$ \hspace{1cm} (13)

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j$$ \hspace{1cm} (14)
Step 2: Optimize α_j

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k$$ \hspace{1cm} (13)

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j$$ \hspace{1cm} (14)

for new value for α_j

$$\alpha_j^* = \alpha_j^{(old)} - \frac{y_j(E_i - E_j)}{\eta}$$ \hspace{1cm} (15)

Similar to stochastic gradient, but with additional error term.
Step 2: Optimize α_j

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k$$ \hspace{1cm} (13)

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j$$ \hspace{1cm} (14)

for new value for α_j

$$\alpha_j^* = \alpha_j^{(old)} - \frac{y_j (E_i - E_j)}{\eta}$$ \hspace{1cm} (15)

What if $x_i = x_j$?
Step 3: Optimize α_i

Set α_i:

$$\alpha_i^* = \alpha_i^{(old)} + y_i y_j \left(\alpha_j^{(old)} - \alpha_j \right)$$

(16)
Step 3: Optimize α_i

Set α_i:

$$\alpha_i^{*} = \alpha_i^{(old)} + y_i y_j \left(\alpha_j^{(old)} - \alpha_j \right)$$

(16)

This balances out the move that we made for α_j.
Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

- If $0 < \alpha_i < C$ (support vector)

$$b = b_1 = b - E_i - y_i(\alpha_i^* - \alpha_i^{(\text{old})})x_i \cdot x_i - y_j(\alpha_j^* - \alpha_j^{(\text{old})})x_j \cdot x_j$$ (17)
Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

- If $0 < \alpha_i < C$ (support vector)

$$
b = b_1 = b - E_i - y_i(\alpha_i^* - \alpha_i^{old})x_i \cdot x_i - y_j(\alpha_j^* - \alpha_j^{old})x_j \cdot x_j (17)$$

- If $0 < \alpha_j < C$ (support vector)

$$
b = b_2 = b - E_j - y_i(\alpha_i^* - \alpha_i^{old})x_i \cdot x_j - y_j(\alpha_j^* - \alpha_j^{old})x_j \cdot x_j (18)$$
Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

- If $0 < \alpha_i < C$ (support vector)
 \[
 b = b_1 = b - E_i - y_i (\alpha_i^* - \alpha_i^{(\text{old})}) x_i \cdot x_i - y_j (\alpha_j^* - \alpha_j^{(\text{old})}) x_i \cdot x_j \quad (17)
 \]

- If $0 < \alpha_j < C$ (support vector)
 \[
 b = b_2 = b - E_j - y_i (\alpha_i^* - \alpha_i^{(\text{old})}) x_i \cdot x_j - y_j (\alpha_j^* - \alpha_j^{(\text{old})}) x_j \cdot x_j \quad (18)
 \]

- If both α_i and α_j are at the bounds (well away from margin), then anything between b_1 and b_2 works, so we set
 \[
 b = \frac{b_1 + b_2}{2} \quad (19)
 \]
Iterations / Details

- What if i doesn’t violate the KKT conditions?
- What if $\eta \geq 0$?
- When do we stop?
Iterations / Details

• What if i doesn’t violate the KKT conditions? **Skip it!**
• What if $\eta \geq 0$?
• When do we stop?
The Algorithm

Iterations / Details

- What if i doesn’t violate the KKT conditions? **Skip it!**
- What if $\eta \geq 0$? **Skip it!**
- When do we stop?
The Algorithm

Iterations / Details

• What if \(i \) doesn’t violate the KKT conditions? **Skip it!**
• What if \(\eta \geq 0? \) **Skip it!**
• When do we stop? **Until we go through \(\alpha \)'s without changing anything**
Recap

Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap
Recap

- SMO: Optimize objective function for two data points
- Convex problem: Will converge
- Relatively fast
- Gives good performance
- Next HW!