Classification: Rademacher Complexity

Machine Learning: Jordan Boyd-Graber
University of Colorado Boulder

LECTURE 6B

Slides adapted from Rob Schapire
Content Questions
Administrivia Questions
Administrivia Questions
Administrivia Questions
Administrivia Questions
Administrivia Questions
What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?
Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?

\[
\mathcal{R}_m(H) = \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i) \right]
\]

(1)
Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?

\[
R_m(H) = \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i) \right]
\] \hspace{1cm} (1)

\[
= \mathbb{E}_{S \sim D^m, \sigma} \left[\frac{1}{m} \sum_{i=1}^{m} \sigma_i h_0(z_i) \right]
\] \hspace{1cm} (2)

\[
\] \hspace{1cm} (3)
Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?

\[
\mathcal{R}_m(H) = \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i) \right]
\]

\[
= \mathbb{E}_{S \sim D^m, \sigma} \left[\frac{1}{m} \sum_{i=1}^{m} \sigma_i h_0(z_i) \right]
\]

\[
= \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\sigma} \left[\sigma_i \right] \sigma_i h_0(z_i) \right]
\]
Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?

\[
\mathcal{R}_m(H) = \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i) \right] \\
= \mathbb{E}_{S \sim D^m, \sigma} \left[\frac{1}{m} \sum_{i=1}^{m} \sigma_i h_0(z_i) \right] \\
= \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\sigma} [\sigma_i] \sigma_i h_0(z_i) \right] \\
= \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^{m} 0 \cdot \sigma_i h_0(z_i) \right]
\]
Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single hypothesis?

\[\mathcal{R}_m(H) = \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{h \in H} \frac{1}{m} \sum_{i=1}^{m} \sigma_i h(z_i) \right] \]

(1)

\[= \mathbb{E}_{S \sim D^m, \sigma} \left[\frac{1}{m} \sum_{i=1}^{m} \sigma_i h_0(z_i) \right] \]

(2)

\[= \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{\sigma} [\sigma_i] \sigma_i h_0(z_i) \right] \]

(3)

\[= \mathbb{E}_{S \sim D^m} \left[\frac{1}{m} \sum_{i=1}^{m} 0 \cdot \sigma_i h_0(z_i) \right] = 0 \]

(4)

(5)
Rademacher Identity 1

Prove

\[\mathcal{R}_m(\alpha H) = |\alpha| \mathcal{R}_m(H) \]

If \(\alpha \geq 0 \) \hspace{1cm} \text{If } \alpha < 0
Rademacher Identity 1

Prove

\[R_m(\alpha H) = |\alpha|R_m(H) \]

If \(\alpha \geq 0 \)

\[\sup_{h \in \alpha H} \sum_{i=1}^{m} \sigma_i h(x_i) = \quad (6) \]

\[\sup_{h \in H} \sum_{i=1}^{m} \alpha \sigma_i h(x_i) = \quad (7) \quad \text{If } \alpha < 0 \]

\[\alpha \sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i) = \quad (8) \]
Rademacher Identity 1

Prove

$$\mathcal{R}_m(\alpha H) = |\alpha| \mathcal{R}_m(H)$$

If $\alpha \geq 0$

$$\sup_{h \in \alpha H} \sum_{i=1}^{m} \sigma_i h(x_i) = \sum_{i=1}^{m} \alpha \sigma_i h(x_i) = \alpha \sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i)$$ (6) (7) (8)

If $\alpha < 0$

$$\sup_{h \in \alpha H} \sum_{i=1}^{m} \sigma_i h(x_i) = \sum_{i=1}^{m} \alpha \sigma_i h(x_i) = \alpha \sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i)$$ (9) (10) (11)
Rademacher Identity 1

Prove

\[\mathcal{R}_m(\alpha H) = |\alpha| \mathcal{R}_m(H) \]

If \(\alpha \geq 0 \)

\[
\sup_{h \in \alpha H} \sum_{i=1}^{m} \sigma_i h(x_i) = \quad (6)
\]

\[
\sup_{h \in \alpha H} \sum_{i=1}^{m} \alpha \sigma_i h(x_i) = \quad (7)
\]

\[
\alpha \sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i) = \quad (8)
\]

Since \(\sigma_i \) and \(-\sigma\) have the same distribution, \(\mathcal{R}_m(\alpha H) = |\alpha| \mathcal{R}_m(H) \)

If \(\alpha < 0 \)

\[
\sup_{h \in \alpha H} \sum_{i=1}^{m} \sigma_i h(x_i) = \quad (9)
\]

\[
\sup_{h \in \alpha H} \sum_{i=1}^{m} \alpha \sigma_i h(x_i) = \quad (10)
\]

\[
(-\alpha) \sup_{h \in H} \sum_{i=1}^{m} (-\sigma_i) h(x_i) \quad (11)
\]
Rademacher Identity 2

Prove

\[\mathcal{R}_m(H + H') = \mathcal{R}_m(H) + \mathcal{R}_m(H') \]
Rademacher Identity 2

Prove

\[\mathcal{R}_m(H + H') = \mathcal{R}_m(H) + \mathcal{R}_m(H') \]

(12)

\[\mathcal{R}_m(H + H') \]

\[= \frac{1}{m} \mathbb{E}_{\bar{\sigma}, s} \left[\sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i(h(x_i) + h'(x_i)) \right] \]

(13)

(14)
Rademacher Identity 2

Prove

\[\mathcal{R}_m(H + H') = \mathcal{R}_m(H) + \mathcal{R}_m(H') \]

(12)

\[
\mathcal{R}_m(H + H') \\
= \frac{1}{m} \mathbb{E}_{\tilde{\sigma}, S} \left[\sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i(h(x_i) + h'(x_i)) \right] \\
= \frac{1}{m} \mathbb{E}_{\tilde{\sigma}, S} \left[\sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i h(x_i) + \sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i h'(x_i) \right]
\]

(13)

(14)

(15)
Rademacher Identity 2

Prove

\[\mathcal{R}_m(H + H') = \mathcal{R}_m(H) + \mathcal{R}_m(H') \]

\[\mathcal{R}_m(H + H') \]

\[= \frac{1}{m} \mathbb{E}_{\mathbf{\sigma}, \mathbf{S}} \left[\sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i (h(x_i) + h'(x_i)) \right] \quad (13) \]

\[= \frac{1}{m} \mathbb{E}_{\mathbf{\sigma}, \mathbf{S}} \left[\sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i h(x_i) + \sup_{h \in H, h' \in H'} \sum_{i=1}^{m} \sigma_i h'(x_i) \right] \quad (14) \]

\[= \frac{1}{m} \mathbb{E}_{\mathbf{\sigma}, \mathbf{S}} \left[\sup_{h \in H} \sum_{i=1}^{m} \sigma_i h(x_i) \right] + \frac{1}{m} \mathbb{E}_{\mathbf{\sigma}, \mathbf{S}} \left[\sup_{h' \in H'} \sum_{i=1}^{m} \sigma_i h(x_i) \right] \quad (15) \]
VC Dimension

To show VC dimension of a set of points

- Show that a set of d can be shattered
- Show that no set of $d + 1$ can be shattered
Axis Aligned Rectangles
Axis Aligned Rectangles
Axis Aligned Rectangles
Hyperplanes
Hyperplanes

![Diagram of hyperplanes in different dimensions and orientations.](image)
Hyperplanes

Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in \mathbb{R}^2. (a) All four points lie on the convex hull. (b) Three points lie on the convex hull while the remaining point is interior.
Hyperplanes

In general, the VC dimension of d-dimensional hyperplanes is $d + 1$
Show that the VC dimension of a finite hypothesis set H is at most $\log |H|$.
Show that the VC dimension of a finite hypothesis set H is at most $\log |H|$.

- To shatter a set, it means that every point can take on a different binary label $h(x)$.
Show that the VC dimension of a finite hypothesis set H is at most $\log |H|$.

- To shatter a set, it means that every point can take on a different binary label $h(x)$
- If a set has d points, there are 2^d ways to do that
Show that the VC dimension of a finite hypothesis set H is at most $\log |H|$.

- To shatter a set, it means that every point can take on a different binary label $h(x)$
- If a set has d points, there are 2^d ways to do that
- Each configuration requires a different hypothesis
Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most $\lg |H|$.

- To shatter a set, it means that every point can take on a different binary label $h(x)$
- If a set has d points, there are 2^d ways to do that
- Each configuration requires a different hypothesis
- Solving for the number of hypotheses gives $\lg |H|$
Next time

- Getting more practical
- SVMs
- Excellent theoretical properties