Abstract

Computational approaches to simultaneous interpretation are stymied by how little we know about the tactics human interpreters use. We produce a parallel corpus of translated and simultaneously interpreted text and study differences between them through a computational approach. Our analysis reveals that human interpreters regularly apply several effective tactics to reduce translation latency, including sentence segmentation and passivization. In addition to these unique, clever strategies, we show that limited human memory also causes other idiosyncratic properties of human interpretation such as generalization and omission of source content.

1 Human Simultaneous Interpretation

Although simultaneous interpretation has a key role in today’s international community, it remains under-explored within machine translation (MT). One key challenge is to achieve a good quality/speed trade-off: deciding when, what, and how to translate. In this study, we take a data-driven, comparative approach and examine: (i) What distinguishes simultaneously interpreted text (Interpretese\(^2\)) from batch-translated text (Translationese)? (ii) What strategies do human interpreters use?

Most previous work focuses on qualitative analysis (Bendazzoli and Sandrelli, 2005; Camayd-Freixas, 2011; Shimizu et al., 2014) or pattern counting (Tohyama and Matsubara, 2006; Sridhar et al., 2013). In contrast, we use a more systematic approach based on feature selection and statistical tests. In addition, most work ignores translated text, making it hard to isolate strategies applied by interpreters as opposed to general strategies needed for any translation. Shimizu et al. (2014) are the first to take a comparative approach; however, they directly train MT systems on the interpretation corpus without explicitly examining interpretation tactics. While some techniques can be learned implicitly, the model may also learn undesirable behavior such as omission and simplification: byproducts of limited human working memory (Section 4).

Prior work studies simultaneous interpretation of Japanese↔English (Tohyama and Matsubara, 2006; Shimizu et al., 2014) and Spanish↔English (Sridhar et al., 2013). We focus on Japanese↔English interpretation. Since information required by the target English sentence often comes late in the source Japanese sentence (e.g., the verb, the noun being modified), we expect it to reveal a richer set of tactics.\(^3\) Our contributions are three-fold. First, we collect new human translations for an existing simultaneous interpretation corpus, which can benefit future comparative research.\(^4\) Second, we use classification and feature selection methods to examine linguistic characteris-

\(^1\)Unlike consecutive interpretation (speakers stop after a complete thought and wait for the interpreter), simultaneous interpretation has the interpreter to translate while listening to speakers.

\(^2\)Language produced in the process of translation is often considered a dialect of the target language: “Translationese” (Baker, 1993). Thus, “Interpretese” refers to interpreted language.

\(^3\)The tactics are consistent with those discovered on other language pairs in prior work, with additional ones specific to head-final to head-initial languages.

\(^4\)https://github.com/hhexiy/interpretese
tics comparatively. Third, we categorize human interpretation strategies, including word reordering tactics and summarization tactics. Our results help linguists understand simultaneous interpretation and help computer scientists build better automatic interpretation systems.

2 Distinguishing Translationese and Interpretese

In this section, we discuss strategies used in Interpretese, which we detect automatically in the next section. Our hypothesis is that tactics used by interpreters roughly fall in two non-exclusive categories: (i) **delay minimization**, to enable prompt translation by arranging target words in an order similar to the source; (ii) **memory footprint minimization**, to avoid overloading working memory by reducing communicated information.

Segmentation Interpreters often break source sentences into multiple smaller sentences (Camayd-Freixas, 2011; Shimizu et al., 2013), a process we call segmentation. This is different from what is commonly used in speech translation systems (Fujita et al., 2013; Oda et al., 2014), where translations of segments are directly concatenated. Instead, humans try to incorporate new information into the precedent partial translation, e.g., using “which is” to put it in a clause (Table 1, Example 3), or creating a new sentence joined by conjunctions (Table 1, Example 5).

Passivization Passivization is useful for interpreting from head-final languages (e.g., Japanese, German) to head-initial languages (e.g., English, French) (He et al., 2015). Because the verb is needed early in the target sentence but only appears at the end of the source sentence, an obvious strategy is to wait for the final verb. However, if the interpreter uses passive voice, they can start translating immediately and append the verb at the end (Table 1, Examples 4–5). During passivization, the subject is often omitted when obvious from context.

Generalization Camayd-Freixas (2011) and Al-Khanji et al. (2000) observe that interpreters focus on delivering the gist of a sentence rather than duplicating the nuanced meaning of each word. More frequent words are chosen as their retrieval time is faster (Dell and O’Searghda, 1992; Cuetos et al., 2006) (e.g., “honorific” versus “polite” in Table 1, Example 1). Although Volansky et al. (2013) show that generalization happens in translation too, it is likely more frequent in Interpretese given the severe time constraints.

Summarization Faced with overwhelming information, interpreters need efficient ways to encode meaning. Less important words, or even a whole sentence can drop, especially when the interpreter falls behind the speaker. In Table 1, Example 2, the literal translation “as much as possible” is reduced to “very”, and the adjective “Japanese” is omitted.

Before we study these characteristics quantitatively in the next section, we visualize Interpretese and Translationese by a word cloud in Figure 1. The size of each word is proportional to the difference between its frequencies in Interpretese and Translationese (Section 3). The word color indicates whether it is more frequent in Interpretese (black) or Translationese (gold). “the” is over-represented in Interpretese, a phenomenon also occurs in Translationese vs. the original text (Eetemadi and Toutanova, 2014). More conjunction words (e.g., “and”, “so”, “or”, “then”) are used in Interpretese, likely for segmentation, whereas “that” is more frequent in Translationese—a sign of clauses. In addition, the pronoun “I” occurs more often in Translationese while “be” and “is” occur more often in Interpretese, which is consistent with our passivization hypothesis.
We investigate the difference between Translationese and Interpretese by creating a text classifier to distinguish between them and then examining the most useful features. We train our classifier on a bilingual Japanese-English corpus of spoken monologues and their simultaneous interpretations (Matsubara et al., 2002). To obtain a three-way parallel corpus of aligned translation, interpretation, and their shared source text, we first align the interpreted sentences to source sentences by dynamic programming following Ma (2006). This step results in 1684 pairs of text chunks, with 33 tokens per chunk on average.

We then collect human translations from Gengo\(^6\) for each source text chunk (one translator per monologue). The original corpus has four interpreters per monologue. We use all available interpretation by copying the translation of a text chunk for its additional interpretation.

3.1 Discriminative Features

We use logistic regression as our classifier. Its job is to tell, given a chunk of English text, which translation was produced it. We add ℓ_1 regularization to select the non-zero features that best distinguish Interpretese from Translationese. We experiment with three dif-

\(^6\)http://gengo.com (“standard” quality).
fferent sets of features: (1) POS: n-gram features of
POS tags (up to trigram);7 (2) LEX: word unigrams;
(3) LING: features reflecting linguistic hypothesis
(Section 2), most of which are counts of indicator
functions normalized by length of the chunk (Ap-
pendix A).

The top linguistic features listed in Table 3 are
consistent with our hypotheses. The most promi-
nent ones—also revealed by POS and LEX—are the
segmentation features, including counts of conjunc-
tion words (CC), content words (nouns, verbs, ad-
jectives, and adverbs) that appear more than once
(repeated), demonstratives (demo) such as this, that,
these, those, segmented sentences (sent), and
proper nouns (NNP). More conjunction words and
more sentences in a text chunk are signs of segmenta-
tion. Repeated words and the frequent use of demon-
stratives come from transforming clauses to indepen-
dent sentences. Next are the passivization features,
indicating more passivized verbs (passive) and fewer
pronouns (pronoun) in Interpretase. The lack of pro-
nouns may be results of either subject omission
during passivization or general omission. The last group
are the vocabulary features, showing fewer numbers of
tem types, token types, and content words in Inter-
pretese, evidence of word generalization. In addition,
a smaller number of content words suggests that inter-
preters may use more function words to manipulate
the sentence structure.

3.2 Classification Results

Recall that our goal is to understand Interpretase,
not to classify Interpretase and Translationese; how-
ever, the ten-fold cross validation accuracy of LING,
POS, LEX are 0.66, 0.85, and 0.94. LEX and POS
yield high accuracy as some features are overfitting,
e.g., in this dataset, most interpreters used “parsing”
for “構文解析” while the translator used “syntact-
ic analysis”. Therefore, they do not reveal much about
the characteristics of Interpretase except for frequent
use of “and” and CC, which indicates segmentation.
Similarly, Volansky et al. (2013) and Eetemadi and
Toutanova (2014) also find lexical features very effective
but not generalizable for detecting Translationese
and exclude them from analysis. One reason for the
relatively low accuracy of LING may be inconsistent

<table>
<thead>
<tr>
<th>LING</th>
<th>POS</th>
<th>LEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>repeated +</td>
<td>⟨S⟩ CC +</td>
<td>And +</td>
</tr>
<tr>
<td>demo +</td>
<td>CC IN +</td>
<td>parsing +</td>
</tr>
<tr>
<td>sent +</td>
<td>NN CC PR +</td>
<td>syntax –</td>
</tr>
<tr>
<td>passive +</td>
<td>⟨S⟩ CC DT +</td>
<td>keyboard +</td>
</tr>
<tr>
<td>pronoun –</td>
<td>CC RB DT +</td>
<td>attitudinal –</td>
</tr>
<tr>
<td>NNP +</td>
<td>RB DT +</td>
<td>text –</td>
</tr>
<tr>
<td>stem type –</td>
<td>CC DT +</td>
<td>adhoc +</td>
</tr>
<tr>
<td>tok type –</td>
<td>NN FW NN +</td>
<td>construction –</td>
</tr>
<tr>
<td>content –</td>
<td>NN CC RB –</td>
<td>Furthermore –</td>
</tr>
</tbody>
</table>

Table 3: Top 10 highest-weighted features in each model. The
sign shows whether it is indicative of Interpretase (+) or Transla-
tionese (–).

4 Strategy Analysis

To better understand under what situations these tac-
tics are used, we apply two-sample t-tests to com-
pare the following quantities between Interpretase and Transla-
tionese: (1) number of inversions (non-
monotonic translations) on all source tokens (inv-all),
verbs (inv-verb) and nouns (inv-noun); (2) number
of segmented sentences; (3) number of natural passiviza-
tion (pass-st), meaning copying a passive construc-
tion in the source sentence into the target sentence,
and intentional passivization (pass-t), meaning intro-
ducing passivization into the target sentence when
the source sentence is in active voice; (4) number
of omitted words on the source side and inserted
words on the target side;8 (5) average word frequency given
by Microsoft Web n-gram—higher means more common.9 For all pairs of samples, the null hypothesis \(H_0 \)
is that the means on Interpretase and Translationese
are equal; the alternative hypotheses and results are in
Table 2.

As expected, segmentation and intentional pas-
vivization happen more often during interpretation.
Interpretase has fewer inversions, especially for
verbs; reducing word order difference is important
for delay minimization. Since there are two to four
different interpretations for each lecture, we further
analyze how consistent humans are on these deci-
sions. All interpreters agree on segmentation 73.7%
of the time, while the agreement on passivization is

7 We prepend ⟨S⟩ and append ⟨E⟩ to all sentences.
8 The number of unaligned words in the source or target.
9 http://weblm.research.microsoft.com/
only 57.1%—passivization is an acquired skill; not all interpreters use it when it can speed interpretation.

The tests also confirm our hypotheses on generalization and omission. However, these tactics are not inherent to the task of simultaneous interpretation. Instead, they are byproducts of humans’ limited working memory. Computers can load much larger resources into memory and weigh quality of different translations in an instant, thus potentially rendering the speaker’s message more accurately. Therefore, directly learning from corpus of human interpretation may lead to suboptimal results (Shimizu et al., 2014).

5 Conclusion

While we describe how Translationese and Interpretese are different and characterize how they differ, the contribution of our work is not just examining an interesting, important dialect. Our work provides opportunities to improve conventional simultaneous MT systems by exploiting and modeling human tactics. He et al. (2015) use hand-crafted rules to decrease latency; our data-driven approach could yield additional strategies for improving MT systems. Another strategy—given the scarcity and artifacts of interpretation corpus—is to select references that present delay-minimizing features of Interpretese from translation corpus (Axelrod et al., 2011). Another future direction is to investigate cognitive inference (Chernov, 2004), which is useful for semantic/syntactic prediction during interpretation (Grissom II et al., 2014; Oda et al., 2015).

A Feature Extraction

We use the Berkeley aligner (Liang et al., 2006) for word alignment, the Stanford POS tagger (Toutanova et al., 2003) to tag English sentences, and Kuroimoto \(^{10}\) to tokenize, lemmatize and tag Japanese sentences. Below we describe the features in detail.

Inversion: Let \(\{A_i\} \) be the set of indexes of target words to which each source word \(w_i \) is aligned. We count \(A_i \) and \(A_j \) \((i < j)\) as an inverted pair if \(\max(A_i) > \min(A_j) \). This means that we have to wait until the \(j \)th word to translate the \(i \)th word.

Segmentation: We use the punkt sentence segmenter (Kiss and Strunk, 2006) from NLTK to detect sentences in a text chunk.

Passivization: We compute the number of passive verbs normalized by the total number of verbs. We detect passive voice in English by matching the following regular expression: a be verb (be, are, is, was, were etc.) followed by zero to four non-verb words and one verb in its past participle form. We detect passive voice in Japanese by checking that the dictionary form of a verb has the suffix “れる”.

Vocabulary To measure variety, we use \(V_t/N \) and \(V_s/N \), where \(V_t \) and \(V_s \) are counts of distinct tokens and stems, and \(N \) is the total number of tokens. To measure complexity, we use word length, number of syllables per word, approximated by vowel sequences; and unigram and bigram frequency from Microsoft Web \(N \)-gram.

Summarization We use the sentence compression ratio, sentence length, number of omitted source words, approximated by counts of unaligned words, and number of content words.

Acknowledgments

We thank CIAIR (Nagoya University, Japan) for providing the interpretation data which formed the foundation of this research. We also thank Alvin Gris som II, Naho Orita and the reviewers for their insightful comments. This work was supported by NSF grants IIS-1320538. Boyd-Graber is also partially supported by NSF grants CCF-1409287 and NCSE-1422492. Any opinions, findings, conclusions, or recommendations expressed here are those of the authors and do not necessarily reflect the view of the sponsor.
References

