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Abstract

Text classification methods for tasks
like factoid question answering typi-
cally use manually defined string match-
ing rules or bag of words representa-
tions. These methods are ineffective
when question text contains very few
individual words (e.g., named entities)
that are indicative of the answer. We
introduce a recursive neural network
(rnn) model that can reason over such
input by modeling textual composition-
ality. We apply our model, qanta, to
a dataset of questions from a trivia
competition called quiz bowl. Unlike
previous rnn models, qanta learns
word and phrase-level representations
that combine across sentences to reason
about entities. The model outperforms
multiple baselines and, when combined
with information retrieval methods, ri-
vals the best human players.

1 Introduction

Deep neural networks have seen widespread
use in natural language processing tasks such
as parsing, language modeling, and sentiment
analysis (Bengio et al., 2003; Socher et al.,
2013a; Socher et al., 2013c). The vector spaces
learned by these models cluster words and
phrases together based on similarity. For exam-
ple, a neural network trained for a sentiment
analysis task such as restaurant review classifi-
cation might learn that “tasty” and “delicious”
should have similar representations since they
are synonymous adjectives.

These models have so far only seen success in
a limited range of text-based prediction tasks,

Later in its existence, this polity’s leader was chosen
by a group that included three bishops and six laymen,
up from the seven who traditionally made the decision.
Free imperial cities in this polity included Basel and
Speyer. Dissolved in 1806, its key events included the
Investiture Controversy and the Golden Bull of 1356.
Led by Charles V, Frederick Barbarossa, and Otto I,
for 10 points, name this polity, which ruled most of
what is now Germany through the Middle Ages and
rarely ruled its titular city.

Figure 1: An example quiz bowl question about
the Holy Roman Empire. The first sentence
contains no words or named entities that by
themselves are indicative of the answer, while
subsequent sentences contain more and more
obvious clues.

where inputs are typically a single sentence and
outputs are either continuous or a limited dis-
crete set. Neural networks have not yet shown
to be useful for tasks that require mapping
paragraph-length inputs to rich output spaces.

Consider factoid question answering: given
a description of an entity, identify the per-
son, place, or thing discussed. We describe a
task with high-quality mappings from natural
language text to entities in Section 2. This
task—quiz bowl—is a challenging natural lan-
guage problem with large amounts of diverse
and compositional data.

To answer quiz bowl questions, we develop
a dependency tree recursive neural network
in Section 3 and extend it to combine predic-
tions across sentences to produce a question
answering neural network with trans-sentential
averaging (qanta). We evaluate our model
against strong computer and human baselines
in Section 4 and conclude by examining the
latent space and model mistakes.



2 Matching Text to Entities: Quiz
Bowl

Every weekend, hundreds of high school and
college students play a game where they map
raw text to well-known entities. This is a trivia
competition called quiz bowl. Quiz bowl ques-
tions consist of four to six sentences and are
associated with factoid answers (e.g., history
questions ask players to identify specific battles,
presidents, or events). Every sentence in a quiz
bowl question is guaranteed to contain clues
that uniquely identify its answer, even without
the context of previous sentences. Players an-
swer at any time—ideally more quickly than
the opponent—and are rewarded for correct
answers.

Automatic approaches to quiz bowl based on
existing nlp techniques are doomed to failure.
Quiz bowl questions have a property called
pyramidality, which means that sentences early
in a question contain harder, more obscure
clues, while later sentences are “giveaways”.
This design rewards players with deep knowl-
edge of a particular subject and thwarts bag
of words methods. Sometimes the first sen-
tence contains no named entities—answering
the question correctly requires an actual un-
derstanding of the sentence (Figure 1). Later
sentences, however, progressively reveal more
well-known and uniquely identifying terms.

Previous work answers quiz bowl ques-
tions using a bag of words (näıve Bayes) ap-
proach (Boyd-Graber et al., 2012). These mod-
els fail on sentences like the first one in Figure 1,
a typical hard, initial clue. Recursive neural
networks (rnns), in contrast to simpler models,
can capture the compositional aspect of such
sentences (Hermann et al., 2013).

rnns require many redundant training exam-
ples to learn meaningful representations, which
in the quiz bowl setting means we need multiple
questions about the same answer. Fortunately,
hundreds of questions are produced during the
school year for quiz bowl competitions, yield-
ing many different examples of questions ask-
ing about any entity of note (see Section 4.1
for more details). Thus, we have built-in re-
dundancy (the number of “askable” entities is
limited), but also built-in diversity, as difficult
clues cannot appear in every question without
becoming well-known.

3 Dependency-Tree Recursive
Neural Networks

To compute distributed representations for the
individual sentences within quiz bowl ques-
tions, we use a dependency-tree rnn (dt-rnn).
These representations are then aggregated and
fed into a multinomial logistic regression clas-
sifier, where class labels are the answers asso-
ciated with each question instance.

In previous work, Socher et al. (2014) use
dt-rnns to map text descriptions to images.
dt-rnns are robust to similar sentences with
slightly different syntax, which is ideal for our
problem since answers are often described by
many sentences that are similar in meaning
but different in structure. Our model improves
upon the existing dt-rnn model by jointly
learning answer and question representations
in the same vector space rather than learning
them separately.

3.1 Model Description

As in other rnn models, we begin by associ-
ating each word w in our vocabulary with a
vector representation xw ∈ Rd. These vectors
are stored as the columns of a d × V dimen-
sional word embedding matrix We, where V is
the size of the vocabulary. Our model takes
dependency parse trees of question sentences
(De Marneffe et al., 2006) and their correspond-
ing answers as input.

Each node n in the parse tree for a partic-
ular sentence is associated with a word w, a
word vector xw, and a hidden vector hn ∈ Rd

of the same dimension as the word vectors. For
internal nodes, this vector is a phrase-level rep-
resentation, while at leaf nodes it is the word
vector xw mapped into the hidden space. Un-
like in constituency trees where all words reside
at the leaf level, internal nodes of dependency
trees are associated with words. Thus, the dt-
rnn has to combine the current node’s word
vector with its children’s hidden vectors to form
hn. This process continues recursively up to
the root, which represents the entire sentence.

We associate a separate d×d matrix Wr with
each dependency relation r in our dataset and
learn these matrices during training.1 Syntac-
tically untying these matrices improves com-

1We had 46 unique dependency relations in our quiz
bowl dataset.



This city ’s economy depended on subjugated peasants called helots
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Figure 2: Dependency parse of a sentence from a question about Sparta.

positionality over the standard rnn model by
taking into account relation identity along with
tree structure. We include an additional d× d
matrix, Wv, to incorporate the word vector xw
at a node into the node vector hn.

Given a parse tree (Figure 2), we first com-
pute leaf representations. For example, the
hidden representation hhelots is

hhelots = f(Wv · xhelots + b), (1)

where f is a non-linear activation function such
as tanh and b is a bias term. Once all leaves
are finished, we move to interior nodes with
already processed children. Continuing from
“helots” to its parent, “called”, we compute

hcalled =f(WDOBJ · hhelots +Wv · xcalled
+ b). (2)

We repeat this process up to the root, which is

hdepended =f(WNSUBJ · heconomy +WPREP · hon
+Wv · xdepended + b). (3)

The composition equation for any node n with
children K(n) and word vector xw is hn =

f(Wv · xw + b+
∑

k∈K(n)

WR(n,k) · hk), (4)

where R(n, k) is the dependency relation be-
tween node n and child node k.

3.2 Training

Our goal is to map questions to their corre-
sponding answer entities. Because there are
a limited number of possible answers, we can
view this as a multi-class classification task.
While a softmax layer over every node in the
tree could predict answers (Socher et al., 2011;
Iyyer et al., 2014), this method overlooks that
most answers are themselves words (features)
in other questions (e.g., a question on World

War II might mention the Battle of the Bulge
and vice versa). Thus, word vectors associated
with such answers can be trained in the same
vector space as question text,2 enabling us to
model relationships between answers instead
of assuming incorrectly that all answers are
independent.

To take advantage of this observation, we
depart from Socher et al. (2014) by training
both the answers and questions jointly in a
single model, rather than training each sep-
arately and holding embeddings fixed during
dt-rnn training. This method cannot be ap-
plied to the multimodal text-to-image mapping
problem because text captions by definition are
made up of words and thus cannot include im-
ages; in our case, however, question text can
and frequently does include answer text.

Intuitively, we want to encourage the vectors
of question sentences to be near their correct
answers and far away from incorrect answers.
We accomplish this goal by using a contrastive
max-margin objective function described be-
low. While we are not interested in obtaining a
ranked list of answers,3 we observe better per-
formance by adding the weighted approximate-
rank pairwise (warp) loss proposed in Weston
et al. (2011) to our objective function.

Given a sentence paired with its correct an-
swer c, we randomly select j incorrect answers
from the set of all incorrect answers and denote
this subset as Z. Since c is part of the vocab-
ulary, it has a vector xc ∈ We. An incorrect
answer z ∈ Z is also associated with a vector
xz ∈We. We define S to be the set of all nodes
in the sentence’s dependency tree, where an
individual node s ∈ S is associated with the

2Of course, questions never contain their own answer
as part of the text.

3In quiz bowl, all wrong guesses are equally detri-
mental to a team’s score, no matter how “close” a guess
is to the correct answer.



hidden vector hs. The error for the sentence is

C(S, θ) =
∑

s∈S

∑

z∈Z
L(rank(c, s, Z))max(0,

1− xc · hs + xz · hs), (5)

where the function rank(c, s, Z) provides the
rank of correct answer c with respect to the
incorrect answers Z. We transform this rank
into a loss function4 shown by Usunier et al.
(2009) to optimize the top of the ranked list,

L(r) =
r∑

i=1
1/i.

Since rank(c, s, Z) is expensive to compute,
we approximate it by randomly sampling K
incorrect answers until a violation is observed
(xc · hs < 1 + xz · hs) and set rank(c, s, Z) =
(|Z|−1)/K, as in previous work (Weston et al.,
2011; Hermann et al., 2014). The model mini-
mizes the sum of the error over all sentences T
normalized by the number of nodes N in the
training set,

J(θ) =
1

N

∑

t∈T
C(t, θ). (6)

The parameters θ = (Wr∈R,Wv,We, b), where
R represents all dependency relations in the
data, are optimized using AdaGrad(Duchi et
al., 2011).5 In Section 4 we compare perfor-
mance to an identical model (fixed-qanta)
that excludes answer vectors from We and show
that training them as part of θ produces signif-
icantly better results.

The gradient of the objective function,

∂C

∂θ
=

1

N

∑

t∈T

∂J(t)

∂θ
, (7)

is computed using backpropagation through
structure (Goller and Kuchler, 1996).

3.3 From Sentences to Questions

The model we have just described considers
each sentence in a quiz bowl question indepen-
dently. However, previously-heard sentences
within the same question contain useful infor-
mation that we do not want our model to ignore.

4Our experiments show that adding this loss term to
the objective function not only increases performance
but also speeds up convergence

5We set the initial learning rate η = 0.05 and reset
the squared gradient sum to zero every five epochs.

While past work on rnn models have been re-
stricted to the sentential and sub-sentential
levels, we show that sentence-level representa-
tions can be easily combined to generate useful
representations at the larger paragraph level.

The simplest and best6 aggregation method
is just to average the representations of each
sentence seen so far in a particular question.
As we show in Section 4, this method is very
powerful and performs better than most of our
baselines. We call this averaged dt-rnn model
qanta: a question answering neural network
with trans-sentential averaging.

4 Experiments

We compare the performance of qanta against
multiple strong baselines on two datasets.
qanta outperforms all baselines trained only
on question text and improves an information
retrieval model trained on all of Wikipedia.
Since Wikipedia text is qanta requires that
an input sentence describes an entity without
mentioning that entity, a constraint that is
not followed by Wikipedia sentences.7 While
ir methods can operate over Wikipedia text
with no issues, we show that the representa-
tions learned by qanta over just a dataset of
question-answer pairs can significantly improve
the performance of ir systems.

4.1 Datasets

We evaluate our algorithms on a corpus of over
100,000 question/answer pairs from two differ-
ent sources. First, we expand the dataset used
in Boyd-Graber et al. (2012) with publically-
available questions from quiz bowl tournaments
held after that work was published. This gives
us 46,842 questions in fourteen different cate-
gories. To this dataset we add 65,212 questions
from naqt, an organization that runs quiz
bowl tournaments and generously shared with
us all of their questions from 1998–2013.

6We experimented with weighting earlier sentences
less than later ones in the average as well as learning an
additional RNN on top of the sentence-level representa-
tions. In the former case, we observed no improvements
over a uniform average, while in the latter case the
model overfit even with strong regularization.

7We tried transforming Wikipedia sentences into
quiz bowl sentences by replacing answer mentions with
appropriate descriptors (e.g., “Joseph Heller” with “this
author”), but the resulting sentences suffered from a
variety of grammatical issues and did not help the final
result.



Because some categories contain substan-
tially fewer questions than others (e.g., astron-
omy has only 331 questions), we consider only
literature and history questions, as these two
categories account for more than 40% of the
corpus. This leaves us with 21,041 history ques-
tions and 22,956 literature questions.

4.1.1 Data Preparation

To make this problem feasible, we only consider
a limited set of the most popular quiz bowl an-
swers. Before we filter out uncommon answers,
we first need to map all raw answer strings to
a canonical set to get around formatting and
redundancy issues. Most quiz bowl answers are
written to provide as much information about
the entity as possible. For example, the follow-
ing is the raw answer text of a question on the
Chinese leader Sun Yat-sen: Sun Yat-sen; or
Sun Yixian; or Sun Wen; or Sun Deming; or
Nakayama Sho; or Nagao Takano. Quiz bowl
writers vary in how many alternate acceptable
answers they provide, which makes it tricky to
strip superfluous information from the answers
using rule-based approaches.

Instead, we use Whoosh,8 an information re-
trieval library, to generate features in an active
learning classifier that matches existing answer
strings to Wikipedia titles. If we are unable
to find a match with a high enough confidence
score, we throw the question out of our dataset.
After this standardization process and manual
vetting of the resulting output, we can use the
Wikipedia page titles as training labels for the
dt-rnn and baseline models.9

65.6% of answers only occur once or twice
in the corpus. We filter out all answers that
do not occur at least six times, which leaves
us with 451 history answers and 595 literature
answers that occur on average twelve times
in the corpus. These pruning steps result in
4,460 usable history questions and 5,685 liter-
ature questions. While ideally we would have
used all answers, our model benefits from many
training examples per answer to learn mean-
ingful representations; this issue can possibly
be addressed with techniques from zero shot
learning (Palatucci et al., 2009; Pasupat and
Liang, 2014), which we leave to future work.

8https://pypi.python.org/pypi/Whoosh/
9Code and non-naqt data available at http://cs.

umd.edu/~miyyer/qblearn.

We apply basic named entity recogni-
tion (ner) by replacing all occurrences of
answers in the question text with single
entities (e.g., Ernest Hemingway becomes
Ernest Hemingway). While we experimented
with more advanced ner systems to detect
non-answer entities, they could not handle
multi-word named entities like the book Love
in the Time of Cholera (title case) or battle
names (e.g., Battle of Midway). A simple
search/replace on all answers in our corpus
works better for multi-word entities.

The preprocessed data are split into folds
by tournament. We choose the past two na-
tional tournaments10 as our test set as well
as questions previously answered by players in
Boyd-Graber et al. (2012) and assign all other
questions to train and dev sets. History results
are reported on a training set of 3,761 ques-
tions with 14,217 sentences and a test set of
699 questions with 2,768 sentences. Literature
results are reported on a training set of 4,777
questions with 17,972 sentences and a test set
of 908 questions with 3,577 sentences.

Finally, we initialize the word embedding
matrix We with word2vec (Mikolov et al., 2013)
trained on the preprocessed question text in
our training set.11 We use the hierarchical skip-
gram model setting with a window size of five
words.

4.2 Baselines

We pit qanta against two types of baselines:
bag of words models, which enable comparison
to a standard NLP baseline, and information
retrieval models, which allow us to compare
against traditional question answering tech-
niques.

BOW The bow baseline is a logistic regres-
sion classifier trained on binary unigram indi-
cators.12 This simple discriminative model is
an improvement over the generative quiz bowl
answering model of Boyd-Graber et al. (2012).

10The tournaments were selected because naqt does
not reuse any questions or clues within these tourna-
ments.

11Out-of-vocabulary words from the test set are ini-
tialized randomly.

12Raw word counts, frequencies, and TF-IDF
weighted features did not increase performance, nor
did adding bigrams to the feature set (possibly because
multi-word named entities are already collapsed into
single words).



BOW-DT The bow-dt baseline is identical
to bow except we augment the feature set with
dependency relation indicators. We include
this baseline to isolate the effects of the depen-
dency tree structure from our compositional
model.
IR-QB The ir-qb baseline maps questions to
answers using the state-of-the-art Whoosh ir
engine. The knowledge base for ir-qb consists
of “pages” associated with each answer, where
each page is the union of training question text
for that answer. Given a partial question, the
text is first preprocessed using a query lan-
guage similar to that of Apache Lucene. This
processed query is then matched to pages uses
bm-25 term weighting, and the top-ranked page
is considered to be the model’s guess. We also
incorporate fuzzy queries to catch misspellings
and plurals and use Whoosh’s built-in query ex-
pansion functionality to add related keywords
to our queries. IR-WIKI The ir-wiki model
is identical to the ir-qb model except that each
“page” in its knowledge base also includes all
text from the associated answer’s Wikipedia
article. Since all other baselines and dt-rnn
models operate only on the question text, this
is not a valid comparison, but we offer it to
show that we can improve even this strong
model using qanta.

4.3 DT-RNN Configurations

For all dt-rnn models the vector dimension d
and the number of wrong answers per node j
is set to 100. All model parameters other than
We are randomly initialized. The non-linearity
f is the normalized tanh function,13

f(v) =
tanh(v)

‖tanh(v)‖ . (8)

qanta is our dt-rnn model with feature
averaging across previously-seen sentences in a
question. To obtain the final answer prediction
given a partial question, we first generate a
feature representation for each sentence within
that partial question. This representation is
computed by concatenating together the word
embeddings and hidden representations aver-
aged over all nodes in the tree as well as the

13The standard tanh function produced heavy sat-
uration at higher levels of the trees, and corrective
weighting as in Socher et al. (2014) hurt our model
because named entities that occur as leaves are often
more important than non-terminal phrases.

root node’s hidden vector. Finally, we send
the average of all of the individual sentence fea-
tures14 as input to a logistic regression classifier
for answer prediction.

fixed-qanta uses the same dt-rnn configu-
ration as qanta except the answer vectors are
kept constant as in the text-to-image model.

4.4 Human Comparison

Previous work provides human answers (Boyd-
Graber et al., 2012) for quiz bowl questions.
We use human records for 1,201 history guesses
and 1,715 literature guesses from twenty-two of
the quiz bowl players who answered the most
questions.15

The standard scoring system for quiz bowl is
10 points for a correct guess and -5 points for
an incorrect guess. We use this metric to com-
pute a total score for each human. To obtain
the corresponding score for our model, we force
it to imitate each human’s guessing policy. For
example, Figure 3 shows a human answering
in the middle of the second sentence. Since our
model only considers sentence-level increments,
we compare the model’s prediction after the
first sentence to the human prediction, which
means our model is privy to less information
than humans.

The resulting distributions are shown in Fig-
ure 4—our model does better than the average
player on history questions, tying or defeat-
ing sixteen of the twenty-two players, but it
does worse on literature questions, where it
only ties or defeats eight players. The figure
indicates that literature questions are harder
than history questions for our model, which is
corroborated by the experimental results dis-
cussed in the next section.

5 Discussion

In this section, we examine why qanta im-
proves over our baselines by giving examples
of questions that are incorrectly classified by
all baselines but correctly classified by qanta.
We also take a close look at some sentences that
all models fail to answer correctly. Finally, we
visualize the answer space learned by qanta.

14Initial experiments with L2 regularization hurt per-
formance on a validation set.

15Participants were skilled quiz bowl players and are
not representative of the general population.



History Literature

Model Pos 1 Pos 2 Full Pos 1 Pos 2 Full

bow 27.5 51.3 53.1 19.3 43.4 46.7
bow-dt 35.4 57.7 60.2 24.4 51.8 55.7
ir-qb 37.5 65.9 71.4 27.4 54.0 61.9
fixed-qanta 38.3 64.4 66.2 28.9 57.7 62.3
qanta 47.1 72.1 73.7 36.4 68.2 69.1

ir-wiki 53.7 76.6 77.5 41.8 74.0 73.3
qanta+ir-wiki 59.8 81.8 82.3 44.7 78.7 76.6

Table 1: Accuracy for history and literature at the first two sentence positions of each question
and the full question. The top half of the table compares models trained on questions only, while
the IR models in the bottom half have access to Wikipedia. qanta outperforms all baselines
that are restricted to just the question data, and it substantially improves an IR model with
access to Wikipedia despite being trained on much less data.
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Figure 4: Comparisons of qanta+ir-wiki to human quiz bowl players. Each bar represents an
individual human, and the bar height corresponds to the difference between the model score and
the human score. Bars are ordered by human skill. Red bars indicate that the human is winning,
while blue bars indicate that the model is winning. qanta+ir-wiki outperforms most humans
on history questions but fails to defeat the “average” human on literature questions.

A minor character in this play can be summoned
by a bell that does not always work; that character
also doesn’t have eyelids. Near the end, a woman
who drowned her illegitimate child attempts to stab
another woman in the Second Empire-style 3 room
in which the entire play takes place. For 10 points,
Estelle and Ines are characters in which existentialist
play in which Garcin claims “Hell is other people”,
written by Jean-Paul Sartre?

Figure 3: A question on the play “No Exit”
with human buzz position marked as 3. Since
the buzz occurs in the middle of the second
sentence, our model is only allowed to see the
first sentence.

5.1 Experimental Results

Table 1 shows that when bag of words and
information retrieval methods are restricted to
question data, they perform significantly worse
than qanta on early sentence positions. The

performance of bow-dt indicates that while
the dependency tree structure helps by itself,
the compositional distributed representations
learned by qanta are more useful. The signif-
icant improvement when we train answers as
part of our vocabulary (see Section 3.2) indi-
cates that our model uses answer occurrences
within question text to learn a more informa-
tive vector space.

The disparity between ir-qb and ir-wiki
indicates that the information retrieval models
need lots of external data to work well at all
sentence positions. ir-wiki performs better
than other models because Wikipedia contains
many more sentences that partially match spe-
cific words or phrases found in early clues than
the question training set. In particular, it is
impossible for all other models to answer clues
in the test set that have no semantically similar



or equivalent analogues in the training ques-
tion data. With that said, ir methods can
also operate over data that does not follow the
special constraints of quiz bowl questions (e.g.,
every sentence uniquely identifies the answer,
answers don’t appear in their corresponding
questions), which qanta cannot handle. By
combining qanta and ir-wiki, we are able to
leverage access to huge knowledge bases along
with deep compositional representations, giv-
ing us the best of both worlds.

5.2 Where the Attribute Space Helps
Answer Questions

We look closely at the first sentence from a
literature question about the author Thomas
Mann: “He left unfinished a novel whose title
character forges his father’s signature to get
out of school and avoids the draft by feigning
desire to join”.

All baselines, including ir-wiki, are unable
to predict the correct answer given only this
sentence. However, qanta makes the correct
prediction. The sentence contains no named
entities, which makes it almost impossible for
bag of words or string matching algorithms to
predict correctly. Figure 6 shows that the plot
description associated with the “novel” node
is strongly indicative of the answer. The five
highest-scored answers are all male authors,16

which shows that our model is able to learn the
answer type without any hand-crafted rules.

Our next example, the first sentence in Ta-
ble 2, is from the first position of a question
on John Quincy Adams, which is correctly an-
swered by only qanta. The bag of words
model guesses Henry Clay, who was also a Sec-
retary of State in the nineteenth century and
helped John Quincy Adams get elected to the
presidency in a “corrupt bargain”. However,
the model can reason that while Henry Clay
was active at the same time and involved in
the same political problems of the era, he did
not represent the Amistad slaves, nor did he
negotiate the Treaty of Ghent.

5.3 Where all Models Struggle

Quiz bowl questions are intentionally written to
make players work to get the answer, especially
at early sentence positions. Our model fails to

16three of whom who also have well-known unfinished
novels

answer correctly more than half the time after
hearing only the first sentence. We examine
some examples to see if there are any patterns
to what makes a question “hard” for machine
learning models.

Consider this question about the Italian ex-
plorer John Cabot: “As a young man, this
native of Genoa disguised himself as a Muslim
to make a pilgrimage to Mecca”.

While it is obvious to human readers that
the man described in this sentence is not actu-
ally a Muslim, qanta has to accurately model
the verb disguised to make that inference. We
show the score plot of this sentence in Figure 7.
The model, after presumably seeing many in-
stances of muslim and mecca associated with
Mughal emperors, is unable to prevent this
information from propagating up to the root
node. On the bright side, our model is able to
learn that the question is expecting a human
answer rather than non-human entities like the
Umayyad Caliphate.

More examples of impressive answers by
qanta as well as incorrect guesses by all sys-
tems are shown in Table 2.

5.4 Examining the Attribute Space

Figure 5 shows a t-SNE visualization (Van der
Maaten and Hinton, 2008) of the 451 answers
in our history dataset. The vector space is
divided into six general clusters, and we focus
in particular on the us presidents. Zooming
in on this section reveals temporal clustering:
presidents who were in office during the same
timeframe occur closer together. This observa-
tion shows that qanta is capable of learning
attributes of entities during training.

6 Related Work

There are two threads of related work relevant
to this paper. First, we discuss previous ap-
plications of compositional vector models to
related NLP tasks. Then, we examine existing
work on factoid question-answering and review
the similarities and differences between these
tasks and the game of quiz bowl.

6.1 Recursive Neural Networks for
NLP

The principle of semantic composition states
that the meaning of a phrase can be derived
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Figure 5: t-SNE 2-D projections of 451 answer
vectors divided into six major clusters. The
blue cluster is predominantly populated by U.S.
presidents. The zoomed plot reveals temporal
clustering among the presidents based on the
years they spent in office.

from the meaning of the words that it con-
tains as well as the syntax that glues those
words together. Many computational models
of compositionality focus on learning vector
spaces (Zanzotto et al., 2010; Erk, 2012; Grefen-
stette et al., 2013; Yessenalina and Cardie,
2011). Recent approaches towards modeling
compositional vector spaces with neural net-
works have been successful, although simpler
functions have been proposed for short phrases
(Mitchell and Lapata, 2008).

Recursive neural networks have achieved
state-of-the-art performance in sentiment anal-
ysis and parsing (Socher et al., 2013c; Hermann
and Blunsom, 2013; Socher et al., 2013a). rnns
have not been previously used for learning at-
tribute spaces as we do here, although recursive
tensor networks were unsuccessfully applied to
a knowledge base completion task (Socher et
al., 2013b). More relevant to this work are the
dialogue analysis model proposed by Kalchbren-
ner & Blunsom (2013) and the paragraph vec-
tor model described in Le and Mikolov (2014),
both of which are able to generate distributed
representations of paragraphs. Here we present
a simpler approach where a single model is able
to learn complex sentence representations and
average them across paragraphs.

6.2 Factoid Question-Answering

Factoid question answering is often functionally
equivalent to information retrieval. Given a
knowledge base and a query, the goal is to

Thomas Mann
Joseph Conrad

Henrik Ibsen
Franz Kafka

Henry James

Figure 6: A question on the German novelist
Thomas Mann that contains no named entities,
along with the five top answers as scored by
qanta. Each cell in the heatmap corresponds
to the score (inner product) between a node
in the parse tree and the given answer, and
the dependency parse of the sentence is shown
on the left. All of our baselines, including ir-
wiki, are wrong, while qanta uses the plot
description to make a correct guess.

return the answer. Many approaches to this
problem rely on hand-crafted pattern matching
and answer-type classification to narrow down
the search space (Shen, 2007; Bilotti et al.,
2010; Wang, 2006). More recent factoid qa
systems incorporate the web and social media
into their retrieval systems (Bian et al., 2008).
In contrast to these approaches, we place the
burden of learning answer types and patterns
on the model.

7 Future Work

While we have shown that dt-rnns are effec-
tive models for quiz bowl question answering,
other factoid qa tasks are more challenging.
Questions like what does the aarp stand for?
from trec qa data require additional infras-
tructure. A more apt comparison would be to
IBM’s proprietary Watson system (Lally et al.,
2012) for Jeopardy, which is limited to single
sentences, or to models trained on Yago (Hof-
fart et al., 2013).

We would also like to fairly compare qanta



Akbar
Shah Jahan

Muhammad
Babur

Ghana

Figure 7: An extremely misleading question
about John Cabot, at least to computer models.
The words muslim and mecca lead to three
Mughal emperors in the top five guesses from
qanta; other models are similarly led awry.

with ir-wiki. A promising avenue for future
work would be to incorporate Wikipedia data
into qanta by transforming sentences to look
like quiz bowl questions (Wang et al., 2007) and
to select relevant sentences, as not every sen-
tence in a Wikipedia article directly describes
its subject. Syntax-specific annotation (Sayeed
et al., 2012) may help in this regard.

Finally, we could adapt the attribute space
learned by the dt-rnn to use information from
knowledge bases and to aid in knowledge base
completion. Having learned many facts about
entities that occur in question text, a dt-rnn
could add new facts to a knowledge base or
check existing relationships.

8 Conclusion

We present qanta, a dependency-tree recursive
neural network for factoid question answering
that outperforms bag of words and informa-
tion retrieval baselines. Our model improves
upon a contrastive max-margin objective func-
tion from previous work to dynamically update
answer vectors during training with a single
model. Finally, we show that sentence-level
representations can be easily and effectively
combined to generate paragraph-level represen-

Q he also successfully represented the amistad
slaves and negotiated the treaty of ghent and
the annexation of florida from spain during his
stint as secretary of state under james monroe

A john quincy adams, henry clay, andrew jack-
son

Q this work refers to people who fell on their
knees in hopeless cathedrals and who jumped
off the brooklyn bridge

A howl, the tempest, paradise lost
Q despite the fact that twenty six martyrs were

crucified here in the late sixteenth century it
remained the center of christianity in its coun-
try

A nagasaki, guadalcanal, ethiopia
Q this novel parodies freudianism in a chapter

about the protagonist ’s dream of holding a
live fish in his hands

A
billy budd, the ambassadors, all my sons

Q a contemporary of elizabeth i he came to power
two years before her and died two years later

A
grover cleveland, benjamin harrison, henry
cabot lodge

Table 2: Five example sentences occuring at
the first sentence position along with their top
three answers as scored by qanta; correct an-
swers are marked with blue and wrong answers
are marked with red. qanta gets the first
three correct, unlike all other baselines. The
last two questions are too difficult for all of
our models, requiring external knowledge (e.g.,
Freudianism) and temporal reasoning.

tations with more predictive power than those
of the individual sentences.
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