1. **What is the vocabulary?**

 Latent Dirichlet allocation (LDA) reveals topics in a corpus. Batch approach does not scale.
 - Two solutions: parallel and online inference
 - Online: after observing a minibatch of documents, estimate latent variables

 Existing online approaches share some flaw:
 - Immutable vocabulary, drawn from a fixed Dirichlet distribution
 - Cannot capture the appearance of new words

 Fixed vocabulary conceals when:
 - words are invented, e.g., "e-mailsourcing"
 - words cross languages, e.g., "Gangnam" words cross topics, e.g., "vuvuzelas"

 We replace the Dirichlet distribution over topics with an unbounded set of words, drawn from an infinite vocabulary.

2. **What is the vocabulary?**

 - Infinite vocabulary
 - Parameters trained on a English dictionary.

3. **Base Distribution Intuition**

 Base Distribution: Character n-gram Model

 - Parameters trained on a English dictionary.
 - A Dirichlet process provides a distribution over an unbounded set of words (atoms).

4. **Base Distribution Intuition**

 - Parameters trained on a English dictionary.
 - A Dirichlet process provides a distribution over an unbounded set of words (atoms).

5. **Generative Model**

 Generative process of the n-gram character model:
 - Choose a length \(l \in \mathbb{N} \)
 - Iteratively generate a word's \(l \)-th character \(c_l \) given context \(c_{<l} \)

 \[
 G_0(c_1) = \frac{\pi_1}{\sum_{i=1}^{k} \pi_i} \quad G_i(c_{<i}) = \sum_{j=1}^{k} \pi_j G_j(c_{<i-j})
 \]

6. **Variational Distribution**

 Variational distribution is \(q(\theta) = \prod_{n \in \mathbb{N}} \prod_{d \in \mathbb{N}} q(\theta_{d,n}) \).

7. **Truncation Set (TOS)**

 To test the quality of the model, we fit a topic model with 50 topics to the \(G \) from the base distribution.

8. **Generative Process of Online LDA with Infinite Vocabulary**

 - for each topic \(d \)
 - Draw \(\pi_d \) from base distribution \(G_{\text{base}} \)
 - Draw \(\beta_d \) from \(G_{\text{base}} \)
 - Draw \(z_d \) from \(G_{\text{base}} \)
 - Draw \(\theta_d \) from \(G_{\text{base}} \)

9. **Inference Algorithm**

 1. Randomly initialize variational parameters.
 2. Repeat:
 - for each document \(d \) in minibatch do
 - Empirically sample the variational distribution \(q(\theta_d | z_d) \) according to
 \[
 q(\theta_d | z_d) = (1 - \epsilon) \cdot \frac{\lambda_{d,n}}{\sum_{n \in \mathbb{N}} \lambda_{d,n}} + \epsilon \cdot \sum_{n \in \mathbb{N}} \rho_{d,n}
 \]
 - Update variational parameters \(\lambda \) using stochastic gradient descent algorithm
 \[
 \Delta \lambda_{d,n} = 1 - \epsilon \cdot \sum_{k=1}^{K} \sum_{m=1}^{M} \sum_{c} \left(\delta(c) \cdot \delta(n) \cdot \delta(d) \right) - \epsilon \cdot \lambda_{d,n}
 \]
 - Update the ranking score according to
 \[
 R_d(\theta_d | z_d) = 1 + \epsilon \cdot \sum_{n \in \mathbb{N}} \rho_{d,n} - R_d(\theta_d | z_d)
 \]
 - Contract vocabulary for every topic if necessary
 - until model convergence

10. **Results: Invariant New Words**

 - Microsoft releases new Xbox console ...
 - The stock reached ...
 - New words are added to the TOS as they appear.
 - After observing \(U \) minibatches, we use a heuristic inspired by Chinese restaurant process to reorder the words in the TOS according to
 \[
 R_d(\theta_d | z_d) = 1 + \epsilon \cdot \sum_{n \in \mathbb{N}} \rho_{d,n} - R_d(\theta_d | z_d)
 \]
 - Retain only the \(T \) terms (truncation size) according to the ranking score.

 - Reordering level \(T \) terms (truncation size) according to the ranking score.

 - Our previous information (e.g., rank and variational parameters) is discarded.

References