
AN EAR DECOMPOSITION APPROACH TO APPROXIMATING
THE SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH

OF A MULTIGRAPH∗

HAROLD N. GABOW†

SIAM J. DISCRETE MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 41–70

Abstract. This paper gives a 3/2 approximation algorithm for the smallest 3-edge connected
spanning subgraph of an undirected multigraph. The previous best algorithm of Khuller and
Raghavachari [J. Algorithms, 21 (1996), pp. 434–450] has approximation ratio 5/3. The algorithm of
Cheriyan and Thurimella [SIAM J. Comput., 30 (2000), pp. 528–560] achieves ratio 3/2 for simple
graphs. Our approach, based on the close relationship between an ear decomposition of a 2-edge
connected graph and 3-edge connected components, enables us to achieve running time O(mα(m,n)).

Key words. approximation algorithms, network design, multigraphs, graph connectivity, edge
connectivity, ear decomposition, depth-first search

AMS subject classifications. 05C40, 05C85, 68R10, 68W25, 68W40, 90B18, 90C27

DOI. 10.1137/S0895480102405476

1. Introduction. Finding the smallest k-edge connected spanning subgraph is
a natural problem in network design. Since the problem is NP-complete even for
k = 2, a large number of approximation algorithms have been developed. This paper
provides an algorithm for k = 3 that has improved accuracy and runs in almost-linear
time.

We begin by surveying the most relevant past work. Throughout this paper all
graphs are undirected and parallel edges are allowed. n and m always denote the
number of vertices and edges of the given graph, respectively.

Khuller and Raghavachari [8] give a 1.85 approximation algorithm for the smallest
k-edge connected spanning subgraph for any k. A simpler version of that algorithm
[7] achieves ratio 2 − 1/k and runs in linear time. For k = 3 this gives ratio 5/3, the
best previous accuracy bound for our problem. Fernandes [4] shows the 5/3 bound is
tight. She also improves the general bound to 1.75 (1.7 for large enough k) when the
graph is simple.

Cheriyan and Thurimella [3] give more accurate algorithms for simple graphs.
The performance bound is 1 + 2/(k + 1). For k = 3 this is 3/2. The time for the
algorithm for k = 3 is O(

√
nm + n2). As pointed out in [3], the analysis relies on

properties of simple graphs that need not hold for multigraphs. Indeed, [5] exhibits a
family of multigraphs for every k ≥ 2 where the approximation ratio of the algorithm
is 2.

For k = 2 Vempala and Vetta approximate the smallest k-edge connected span-
ning subgraph to the ratio 4/3 [10]. As in [3], their approach is based on matching.

We use a simpler depth-first search approach. The approximation ratio is ≤ 3/2
and the running time is O(mα(m,n)) where α is the inverse Ackermann function.
The starting point of our approach is the observation that, in an ear decomposition of

∗Received by the editors January 15, 2002; accepted for publication (in revised form) August
21, 2003; published electronically July 2, 2004. A preliminary, abbreviated version of this paper
appeared in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM,
Philadelphia, ACM, New York, 2002, pp. 84–93.

http://www.siam.org/journals/sidma/18-1/40547.html
†Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309-0430

(hal@cs.colorado.edu).

41

42 HAROLD N. GABOW

a 2-edge connected graph, the ends of each ear are 3-edge connected. Cheriyan, Sebő,
and Szigeti [2] use ear decomposition to approximate the smallest 2-edge connected
subgraph.

Our lower bound is based on a generalization of the component lower bound
introduced in [6]. We use a new operation,“breaking off,” to strengthen that bound.
We provide a simple proof that our algorithm has approximation ratio at most 14/9,
and a more involved proof of the 3/2 accuracy bound. The latter requires combining
three lower bounds (each one an instance of the component lower bound) and keeping
track of the slack in those bounds. We give an example in which the algorithm has
approximation ratio 17/12, i.e., 1/12 below our upper bound.

After the initial writing of this paper, we presented in [5] an improved analysis of
the above-mentioned algorithm of Khuller and Raghavachari for the smallest k-edge
connected spanning subgraph. The performance ratio of that algorithm is shown to
be < 1.61 for any k > 1. To achieve this for odd values of k requires using the ear
decomposition algorithm presented here as the base case. Furthermore, the analysis
of [5] requires a stronger version of the performance ratio of the ear decomposition
algorithm. The proof of the stronger version uses some parts of the argument for the
3/2 bound of this paper. For that reason the proof of the stronger version has been
added as an appendix to this paper.

Section 2 gives basic facts that are used in the ear decomposition algorithm.
Section 3 presents the algorithm. Section 4 gives a simple analysis showing that the
approximation ratio is ≤ 14/9. Section 5 refines the analysis to show the desired 3/2
bound. Section 6 shows the time bound. Appendix A gives the stronger version of
the approximation ratio that is needed by [5] for general k. This section closes with
our terminology and a background review. We use much of the notation of [2].

We often denote a singleton set {x} by x. When we say a set is partitioned into
subsets, each subset is required to be nonempty. For a family S of pairwise disjoint
sets of vertices, the graph G/S is formed by contracting each set of S to a single
vertex. We retain parallel edges but not loops.

We denote edges by juxtaposing the two vertices, e.g., vw. If vw is a tree edge
or back edge of a depth-first search, the order of the vertices is significant: For a tree
edge, v is the parent of w; for a back edge, v is a descendant of w. If the edge is not
known to be a tree or back edge, the order is irrelevant.

In a graph G = (V,E) with degree function d, if X and Y are disjoint sets of
vertices, then d(X,Y) is the total number of edges joining X and Y. d(X) stands for
d(X,V − X). If H is a subgraph, then dH denotes its degree function. (Sections 3
and 6 use the function d to denote depth in a tree, but this is clearly indicated.)

Two vertices are k-edge connected if they are joined by k edge-disjoint paths.
Equivalently, the two vertices remain connected after deleting any < k edges. This
binary relation is an equivalence relation. A graph is k-edge connected if every two
distinct vertices are k-edge connected. k-ECSS stands for k-edge connected spanning
subgraph. For any k,

εk = the minimum number of edges in a k-ECSS.

Throughout this paper we abbreviate ε3 to ε.
We assume paths are simple, but they can be open or closed. A closed path has

a distinguished vertex that plays the role of both endpoints. For a path P , I(P)
denotes the internal vertices of P , i.e., all the vertices except the endpoints. The
symbol P denoting a path may reference the vertex set or the edge set of the path,
as determined by context.

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 43

An ear decomposition of a graph is a partition of the edges into paths Pi, i =
0, . . . , q, such that P0 is a single vertex r and, for i > 0, each Pi has its ends and no
other vertices in common with previous paths, i.e., V (Pi) ∩ (

⋃i−1
j=0 V (Pj)) = V (Pi) −

I(Pi) for i = 1, . . . , q. A graph is 2-edge connected if and only if it has an ear
decomposition [11]. For any vertex v the first ear containing v is denoted Pv. Any
v �= r has v ∈ I(Pv) (and for v = r, I(Pr) = ∅). An ear is short if its length is one,
i.e., it has no internal vertices, otherwise the ear is long.

Given a spanning tree, a nontree edge covers every edge in its fundamental circuit.
In a rooted tree we distinguish between ancestor and proper ancestor, the former
relation being reflexive and the latter irreflexive. These distinctions hold similarly for
descendant and proper descendant.

Khuller and Vishkin [9] define a (dfs) tree carving for any depth-first spanning
tree T as follows. Do a bottom-up traversal of T , constructing a set of back edges B
according to the following rule: When backing up from a vertex v to its parent p, if
the tree edge pv is not covered by an edge of B, then add to B the back edge c that
goes from a descendant of v to a vertex closest to the root. Edge c exists and covers
pv, assuming G is 2-edge connected.

Each tree edge pv that forces a back edge to be added to B is a carving edge.
Deleting the carving edges from T gives a forest called the dfs tree carving. Define

γ = the number of carving edges.

Khuller and Vishkin show that for any k,

εk ≥ kγ.

This follows from the fact that no back edge covers two carving edges.

2. Basic facts. We increase the edge-connectivity by one using the following
proposition, a slight strengthening of Lemma 3.1 of [8]. Let G be k-edge connected.
Let K be a (k− 1)-ECSS of G. Let S be a partition of V , each set of which is k-edge
connected in K (i.e., any two vertices of the same set have ≥ k edge-disjoint paths
between them). Let F be a maximal spanning forest of the graph (G−K)/S.

Proposition 2.1. K + F is k-edge connected.
The next lemma gives our basic relation between an ear decomposition and 3-edge

connectedness. (See Figure 1.) Consider an ear decomposition Pi, i = 0, . . . , q, of a 2-
edge connected graph. For any vertex v let the “closure” Cl(v) be the smallest subset
of {Pi} that defines an ear decomposition of a (not necessarily spanning) subgraph
containing v. (Closure can be defined inductively: For P0 = {r}, Cl(r) = P0. For
v �= r, if Pv goes from a to z, then Cl(v) = {Pv} ∪ Cl(a) ∪ Cl(z).)

Lemma 2.2. Consider an ear decomposition of a 2-edge connected graph.
(i) The two endpoints of an ear are 3-edge connected.
(ii) If an ear has endpoints a and z, then each endpoint of an ear in Cl(a)⊕Cl(z)

is 3-edge connected with a and z.
Proof. Let P be an ear joining a and z.
(i) Let H be the subgraph Cl(a) ∪ Cl(z). a and z are 2-edge connected in H.

Hence H contains two edge-disjoint az-paths. No edge of P belongs to H. This makes
three edge-disjoint az-paths.

(ii) By symmetry it suffices to show that an arbitrary endpoint v of an ear in
Cl(a) − Cl(z) is 3-edge connected with z. Let H be the 2-edge connected graph
Cl(z) ∪ Cl(v). The ears in Cl(a) − Cl(v) contain a path Q from v to a. Combining

44 HAROLD N. GABOW

z

a

Fig. 1. Illustration of Lemma 2.2: Cl(a) includes the 3 solid ears but not the 2 dashed ears.
The 4 hollow vertices are the endpoints of ears in Cl(a)⊕Cl(z) and so are 3-edge connected with a
and z.

Q with the given ear P gives a path from v to z that is edge-disjoint from H. As in
part (i), v and z are 3-edge connected.

Our algorithm forms an ear decomposition based on depth-first search. Let G be
2-edge connected and let T be a dfs tree of G. We shall construct ears consisting of a
tree path followed by a back edge. We use the triple of vertices a, y, z to identify the
ear consisting of the tree path from a to y followed by the back edge yz. Here z is an
ancestor of a, which is an ancestor of y. (If a = y, the ear is short.)

To construct the ear decomposition for T let the first ear be r, the root of T .
Suppose we have constructed a number of ears that collectively contain vertices X ⊂
V . Choose a tree edge ab with a ∈ X, b /∈ X. Choose a back edge yz that covers ab.
(yz exists since G is 2-edge connected.) The next ear is defined by the triple a, y, z.
Adding this ear enlarges X by the vertices in the tree path from a to y. Repeat this
step until X = V . Finally, make any back edge that is not yet in an ear into a short
ear.

For the rest of this paper all ear decompositions are constructed in this manner.
We use Figure 2 to illustrate various concepts involving ear decompositions.

We focus on the first vertex of an ear, i.e., vertex a in a, y, z. For each vertex x
let f(x) be the first vertex of ear Px. f is represented by F , a tree on vertex set V :
The root of F is r. The parent of a vertex x �= r is f(x). In Figure 2 the first three
proper ancestors of j in F are i, d, and a.

In this paper we use both the dfs tree T and the first vertex tree F . By default
all tree terminology refers to T . For instance, we use “ancestor” (referring to T),
“ancestor in T” (when there is danger of confusion), and “ancestor in F .” r always
denotes the root of T (r is also the root of F). It is easy to see that the proper
descendants of x in F are the vertices that, in T , descend from a child x′ of x with
x′ /∈ Px.

Corollary 2.3. For an ear a, y, z, vertex z is 3-edge connected with every vertex
that, in F , is an ancestor of a but not f(z).

Remark. It is possible that a is the only ancestor satisfying the conditions of the
corollary.

Proof. If p is the parent of vertex x in T , then obviously Cl(p) ⊆ Cl(x) (equality
holds if p �= f(x)). Iterating shows that any ancestor b of x has Cl(b) ⊆ Cl(x). Thus

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 45

a b c d e

g

h

i
j k

f

Fig. 2. Schematic figure illustrating four long ears. Each horizontal or vertical line represents
the tree path of one ear. Back edges of ears are not drawn. For example, one ear consists of the
path from a to e followed by a back edge from e to an ancestor of a.

in the statement of the corollary, Cl(z) ⊆ Cl(a). In fact we get Cl(a) from Cl(z) by
adding ears whose first vertices are the vertices that, in F , are proper ancestors of
a but not proper ancestors of z. (Example: In Figure 2 we get Cl(k) from Cl(c) by
adding two ears, with first vertex d and i, respectively.) Lemma 2.2 now implies the
corollary.

Garg, Santosh, and Singla [6] introduced the “component lower bound” for 2-
ECSS. It was refined in [2]. We use the following generalization to k-ECSS. For any
graph H let c(H) be the number of connected components of H.

Lemma 2.4 (component lower bound). For any integer k let G = (V,E) be
k-edge connected. For any partition S of V , εk ≥ (k/2)

∑
S∈S c(G− S).

Remark. The degree lower bound εk ≥ kn/2 amounts to the special case of the
lemma where each S ∈ S consists of one vertex. The tree carving lower bound εk ≥ kγ
is the special case where each S is a set of the tree carving.

Proof. Let H be a k-ECSS with εk edges. For any set S, each connected compo-
nent of G− S is joined to S by ≥ k edges of H. Hence

2εk =
∑
v∈V

dH(v) =
∑
S∈S

∑
v∈S

dH(v) ≥
∑
S∈S

kc(G− S).

The rest of this section presents a method for strengthening the component lower
bound. It is only used in section 5, so readers interested in just the 14/9 upper bound
can skip this material.

We first give the idea and then a formalization. Suppose a set S ⊆ V can be
partitioned into sets S0, S1 so that ≤ 1 connected component of G− S is adjacent to
both S0 and S1. Then

c(G− S0) + c(G− S1) ≥ c(G− S) + 1.

This follows since, for i = 0 or 1, a component of G − S that is adjacent only to Si

contributes to c(G− Si). So ≤ 1 component of the right-hand side is not counted by
the left-hand side. In addition, each G − Si has a component containing a vertex of
S1−i, which is also counted by the left-hand side.

We now define a configuration in which this principle can be applied repeatedly.
Definition 2.5. Consider a partition of a set S ⊆ V into sets Si, i = 0, . . . , h,

where each index i, 0 < i ≤ h has a “parent” index p(i), 0 ≤ p(i) < i. An edge joining
Si and Sp(i) is a bridging edge. A component of G−S that is adjacent to both Si and

46 HAROLD N. GABOW

Sp(i) but no other set Sj is a bridging component. The partition is an enhancement
(of S) if the following two conditions hold:

(i) Every edge joining two distinct sets Sj is a bridging edge.
(ii) Every component of G − S adjacent to two or more distinct sets Sj is a

bridging component. Furthermore, at most one bridging component joins any two
distinct Sj’s.

Note that the definition allows any number of components of G−S to be adjacent
to a single set Si. We also remark that the following lemma remains valid for a slightly
broader definition of enhancement, but Definition 2.5 suffices for our purposes.

Lemma 2.6. If S ⊆ V has an enhancement Si, i = 0, . . . , h, then

h∑
i=0

c(G− Si) ≥ c(G− S) + h.

Proof. The proof is by induction on h. The above argument shows

c(G− (S − Sh)) + c(G− Sh) ≥ c(G− S) + 1.

So if h = 1, we are done. For h > 1 we claim that the partition of S − Sh into
Si, i = 0, . . . , h − 1, is an enhancement. This claim implies

∑h−1
i=0 c(G − Si) ≥

c(G − (S − Sh)) + h − 1 by induction. Together with the preceding inequality, this
completes the inductive step.

To prove the claim, use the same parent function. Obviously condition (i) holds.
The components of G − (S − Sh) can be derived from the components of G − S as
follows: Let C be the family of components of G − S that are adjacent to Sh and
no other set Si. Let B be the bridging component for Sh and Sp(h), if it exists.
The components of G − (S − Sh) are those of G − S with C and B replaced by one
component, Sh ∪B ∪

⋃
C. Since this new component is adjacent only to Sp(h) (or to

no set Si, i < h), condition (ii) continues to hold.
We form enhancements by starting with set S and repeatedly replacing it by

S − Si, where Si is the next set of the enhancement. We call this operation breaking
off the set Si. So the enhancement of Definition 2.5 corresponds to breaking off sets
Sh, Sh−1, . . . , S1 in that order. Details of the breaking off operation employed in this
paper are given in section 5.2.

An enhancement of a partition S of V is formed by enhancing each set of S.
Suppose we do a total of β break off operations in various sets of S. Lemmas 2.4
and 2.6 imply

εk ≥ (k/2)

(∑
S∈S

c(G− S) + β

)
.(1)

The analysis of section 5 uses the degree lower bound, the carving lower bound,
and (1). Furthermore, it analyzes the slack in these three lower bounds. We now
present the version of (1) with slack terms.

Fix a k-ECSS H with εk edges. We will apply (1) to the graph H, not G. Start
with a partition S of V . Form an enhancement, in H, by doing a total of β break off
operations. An edge of H is nonbridging if it joins two vertices in the same set Si of
the enhanced partition; for any S ∈ S, a component of H − S is nonbridging if it is
adjacent (in H) only to vertices in one set Si of the enhanced partition. The reader
should not forget that an enhancement may be valid in H but not in G. For instance,

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 47

a component may be nonbridging in H but may have neighbors in many different sets
Si in G.

Say that a component has s surplus edges if k + s edges of H leave it. Define

θa = the total number of surplus edges for all nonbridging components of H;
θb = the number of nonbridging edges of H.

Note that θa is computed by summing, for every S ∈ S, the number of surplus edges
for all connected components of H − S that are adjacent to only one set Si of the
enhancement. Introducing the terms θa and θb in the proof of Lemma 2.4 and using
Lemma 2.6 gives

εk ≥ (k/2)

(∑
S∈S

c(H − S) + β

)
+ θa/2 + θb.(2)

3. Approximation algorithm. Assume the given graph G is biconnected. If
not, each block of G is 3-edge connected, and it suffices to run our approximation
algorithm on each block. The algorithm consists of three phases that collectively
construct a 3-ECSS A. The most involved part is Phase II. We begin by stating all
three phases, and then we describe Phase II in detail.

Phase I does a depth-first search to construct a dfs tree carving. Let T denote
the depth-first search tree and let r be its root. Phase I sets A to T . Let C ⊆ T be
the set of carving edges and write γ = |C|.

Phase II adds γ back edges to A, making A 2-edge connected. These back edges
are chosen to also make a large number of pairs of vertices 3-edge connected. This is
done by building A in the form of an ear decomposition. To create even more 3-edge
connected pairs, additional back edges are added to A as short ears.

Phase III makes A 3-edge connected. This is done by adding a maximal forest of
edges that span the 3-edge connected components of A, as described in Proposition 2.1.

The details of Phases I and III are straightforward. The rest of this section is
devoted to Phase II, which is given by the pseudocode of Figure 3. The routines of
Figure 3 use an auxiliary procedure Multi-Merge and an associated data structure
to keep track of 3-edge connected pairs. We now describe both of these.

The data structure is a partition of V into sets of vertices that are known to be
3-edge connected in A. For x ∈ V , t(x) denotes the set containing x. Thus x is 3-edge
connected to every vertex of t(x) in the subgraph A. The sets t(x) are called t-sets and
the corresponding partition of V is called the t-partition. The algorithm maintains
the t-partition using the disjoint-set data structure, with operations Union(x, y) and
Find(x) [1].

Phase II builds the first vertex tree F (defined in section 2) as it builds the
ear decomposition of A. Say that an ear from a to z (with z an ancestor of a)
traverses the set t(z) and all the sets t(x) where, in tree F , x is an ancestor of a but
not an ancestor of f(z). For instance, in Figure 2 an ear i, k, b traverses t(i), t(d),
and t(b). In general, all the traversed sets can all be merged together according to
Corollary 2.3. The purpose of Multi-Merge(a, z) is to execute this merge. Specifically,
Multi-Merge(a, z) performs Union(z, x) for every distinct set t(x) �= t(z) traversed
by the ear from a to z. Observe that an ear traversing s distinct t-sets causes exactly
s− 1 union operations.

We turn to Figure 3. Let s be the child of r in the dfs tree T . (The root has a
unique child since G is biconnected.) Here and throughout this section, d(v) denotes
the depth of vertex v in T .

48 HAROLD N. GABOW

Phase II

1. Long Ear(s);
2. Short Ear(s, 3);
3. Short Ear(s, 2);

Long Ear(b)
1. let a be the parent of b in T ;
2. choose an edge c ∈ C that descends from edge ab and is covered by a back

edge yz with y descending from c and z an ancestor of a;
3. choose the above yz so

(i) z /∈ t(a) if possible /∗ merging ear ∗/
(ii) subject to (i), the depth d(y) is maximal;

/∗ the new ear Pb consists of the tree path from a to y followed by edge yz ∗/
4. add the back edge yz to A;
5. Multi-Merge(a, z);
6. for each tree edge xx′ with x ∈ I(Pb), x

′ /∈ Pb do Long Ear(x′);

Short Ear(b, i)
1. for each tree edge xx′ with x ∈ I(Pb), x

′ /∈ Pb do Short Ear(x′, i);
2. for each x ∈ I(Pb) do
3. if some back edge xz traverses > i distinct t-sets then { /∗ short ear ∗/
4. let xz be such an edge with minimum depth d(z);
5. add xz to A;
6. Multi-Merge(x, z) }

Fig. 3. Algorithms for Phase II.

Phase II has three main steps (see the top of Figure 3). It starts with every
vertex being a singleton t-set. Long Ear enlarges A from the dfs tree T to a 2-edge
connected graph. This is done in a top-down traversal of T , as described in section 2,
determining the back edges of A that form long ears. Next, the first execution of
Short Ear enlarges A with back edges that form short ears, each one causing ≥ 3
unions by Multi-Merge. This is done in a bottom-up traversal of T . Then the second
execution of Short Ear adds short ears that cause 2 unions by Multi-Merge.

The recursive procedure Long Ear(b) starts by constructing a new ear whose first
internal vertex is b. To do this, in lines 2–3 we choose the back edge yz of the new
ear a, y, z. The back edge yz covers a carving edge c. It is easy to see that if ab /∈ C,
then the carving edge c descends from b; on the other hand, if ab ∈ C, then c = ab.
The existence of carving edge c and back edge yz is guaranteed by the definition of
tree carving.

A long ear is classified as merging if z /∈ t(a) in line 3(i); otherwise it is nonmerging.
It is clear that the call to Multi-Merge (line 5) performs one or more unions if the
ear is merging. The remark after Lemma 4.1 shows that no union is performed for a
nonmerging ear.

Line 3(ii) ensures that the depth d(y) is maximal; i.e., if a, y, z is nonmerging,
then no ear a, y′, z′ with y′ properly descending from y is possible, and if a, y, z is
merging, then no merging ear a, y′, z′ with y′ properly descending from y is possible.

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 49

Line 4 updates the tree F when it adds yz to A. Specifically, each vertex of I(Pb) is
made a child of a. Finally, line 6 of Long Ear grows the rest of the ear decomposition
in recursive calls.

Short Ear(b, i) starts by recursively processing the ears descending from Pb. Then
it adds short ears that have their deeper vertex in I(Pb) and cause i or more unions.
(In line 3, it makes sense to speak of the t-sets traversed by back edge xz since xz is
an ear.) Note that in line 4, xz is not already in A since a back edge of A traverses at
most two distinct t-sets. Also note that xz need not be the back edge with minimum
d(z). For instance, in Figure 2 if t(a) = {a, b, d}, then the back edge jc traverses more
t-sets than ja or jb.

We note that the call to Short Ear(s, 3) is irrelevant to section 4: All results
in that section hold if the call is omitted. We also note that section 5.1 adds some
natural rules for choices made in the algorithm of Figure 3.

Figure 4 illustrates the algorithm on a family of graphs in which the approximation
ratio approaches 17/12. (The illustration obeys the rules given in section 5.1 too.)
First we describe the graph. The number of vertices is divisible by 4, so we write
n = 2h with h even. The vertices are identified by the integers 0, . . . , n − 1. All
arithmetic on vertex numbers is done modulo n. It is convenient to describe the edges
as a union of five sets. An important property is that no two even-numbered vertices
are adjacent. Figure 4(a) illustrates the first edge set,

H = {(2i, 2i− 1), (2i, 2i + 1), (2i, 2i + 3) : 0 ≤ i < h}.

It is easy to see that the edges of H induce a 3-edge connected graph. Since each
vertex has degree 3, H is a smallest 3-ECSS. The second edge set constitutes the dfs
tree shown in Figure 4(b)–(c),

T = {(2i− 1, 2i + 1) : 1 ≤ i < h} ∪ {(2h− 1, 2i) : 0 ≤ i < h}.

The third edge set, shown in Figure 4(b), contains the back edges that complete
merging ears,

M = {(2i, 2h− 2i− 3) : h/2 − 1 ≤ i ≤ h− 2}.

The fourth edge set consists of the back edges that form short ears, shown in Fig-
ure 4(c). Writing a = 3h/2, the set is

S = {(2i, 3h− 2i− 3) : a/2 − 1 ≤ i ≤ h− 2}.

The last edge set forms the spanning forest added to A in Phase III,

F = {(1, 2i) : 0 ≤ i ≤ a/2 − 2 or i = h− 1} ∪ {(1, 2i + 1) : a/2 ≤ i ≤ h− 2}.

Since no two even-numbered vertices are adjacent, T is a valid dfs tree of the
entire graph. Phase I constructs T as the dfs tree. The carving edges are the h edges
incident to the leaves of T . In Phase II, Long Ear works as follows (Figure 4(b)):
The first ear is 1, 3, 5, . . . , 2h − 1, 2h − 2, 1. (The back edge comes from H.) The
remaining long ears each have first vertex 2h− 1. First, h/2 merging ears are formed
using the back edges of M . These ears build up a t-set of h/2 + 1 vertices, drawn
black in Figure 4(b), t(1) = {2i − 1, 2h − 1 : 1 ≤ i ≤ h/2}. All other t-sets are
singletons. Next, h/2 − 1 nonmerging ears are formed using back edges contained in
H, (h − 4, h − 3), . . . , (2, 3), (0, 1). (The choice of the second vertex of these edges

50 HAROLD N. GABOW

...
...

1
2

3

2i2i+3

02h-1
2h-2

(a)

2

0

......

2h-2

2h-4

h-2 2h-1

1

3

h-3

h-4

h-1

a-1

(b)

...h-4

2

02h-2

2h-4

2h-1

1

h-1

a-1

h+1

h-2

...

a+1

a-2

(c)

Fig. 4. Execution of Phase II on an example graph. (a) Minimum 3-ECSS. (b) Subgraph A
after Long Ear. Dfs tree edges are solid. Back edges of long ears are dashed. (c) Dfs tree with
the edges added in Short Ear. The parameters of section 4 for this example are γ = h, µ = µ =
h/2, σ = h/4, ν = h, χ = 0, κ = 3h/4.

is not crucial.) Observe that no merging ear is possible for any of the corresponding
carving edges.

Figure 4(c) illustrates the rest of Phase II, i.e., the two executions of Short Ear.
Short Ear(s, 3) does nothing. Short Ear(s, 2) adds the edges of S as h/4 short ears.
These add h/2 vertices to t(1), drawn black. No short ears are added from vertices
a− 4, . . . , 2, 0, since each back edge from these vertices traverses only two t-sets.

Phase III adds the forest F to A, joining each hollow vertex of Figure 4(c) to
vertex 1. Phases I, II, and III add 2h − 1, h + h/4 = 5h/4, and h − 1 edges to A,
respectively. The approximation ratio is (17h/4 − 2)/3h, which approaches 17/12 as
h → ∞.

Returning to our general discussion, it is clear that Phase II works correctly,

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 51

and in fact the whole algorithm correctly produces a 3-ECSS. We note one further
property of Phase II.

Lemma 3.1. If a nonmerging ear has exactly one internal vertex, that vertex is
a leaf.

Proof. Consider a nonmerging ear P whose first edge is ab. Assume ab is a carving
edge; otherwise, obviously P has > 1 internal vertex. P is created in Long Ear(b).
Assume b is not a leaf of T . Hence b has a child v. Since b is not an articulation point,
some back edge e joins a descendant of v to an ancestor of a. Since P is nonmerging,
e can be chosen in line 3(ii), which is a contradiction. Hence P has > 1 internal
vertex.

4. Basic analysis. This section proves some basic properties of the algorithm,
leading to the conclusion that the approximation ratio is ≤ 14/9. We begin by
bounding the size of the algorithm’s subgraph A. Define the following quantities that
satisfy (3):

µ = the number of merging ears,
µ = the number of nonmerging ears.

γ = µ + µ.(3)

By definition, a merging ear does at least one nontrivial union operation in
Multi-Merge. A short ear does at least two nontrivial union operations. All other
unions executed by Multi-Merge are called surplus unions. So an ear causes s surplus
unions if it is a merging ear causing 1 + s unions, or a short ear (in Short Ear(s, 3))
causing 2 + s unions. Define the following quantities that satisfy (4):

σ = the number of short ears,
ν = the total number of unions,
χ = the number of surplus unions.

ν = µ + 2σ + χ.(4)

These quantities are illustrated in Figure 4.
Phase I adds n − 1 tree edges. Phase II adds γ back edges for long ears and

σ edges that are short ears. Phase III adds ≤ (n − 1) − ν edges to make A 3-edge
connected. Thus the number of edges added by the algorithm is

|A| ≤ (n− 1) + γ + σ + (n− 1) − ν = 2(n− 1) + µ− σ − χ.

We turn to lower-bounding ε. We first prove a structural property of the t-
partition: At any point in time, any set t(x) contains f(x) if it contains an ancestor
of f(x). In fact, we prove the following more general property.

Lemma 4.1. At any point in time, any set t(x) contains any ancestor of x in F
that has an ancestor in T belonging to t(x).

Example. In Figure 2, if t(j) contains a proper ancestor of a, then it contains i, d,
and a. The lemma is not true if we change F to T ; e.g., we may have b ∈ t(j), but
c, f /∈ t(j).

Proof. We claim the following.
Claim. At any point in time for any vertex x, t(x) contains f(x) if it contains a

vertex not descending (in T) from I(Px).
This implies the lemma as follows: Suppose a ∈ t(x) is an ancestor in T of f(x).

The claim implies f(x) ∈ t(x). Iterating this argument gives the lemma.

52 HAROLD N. GABOW

We will use this simple consequence of the claim: Call a vertex x ancestral if every
vertex of t(x) descends (in T) from I(Px). The claim implies that if f(x) /∈ t(x), then
x is ancestral.

We now prove the claim by contradiction. Consider the first time the claim fails,
say, as a result of the operation Multi-Merge(y, z). The new t-set τ formed by this
operation must violate the claim. τ is the union of all t-sets traversed by the ear from
y to z. Specifically, if W is the set of vertices that, in F , are ancestors of y but not
f(z), τ = t(z) ∪

⋃
x∈W t(x). (Throughout this argument the notation t(u) refers to

the t-set of u immediately before Multi-Merge(y, z).) Let w be the vertex of W that
is shallowest in F . Since some back edge goes from a descendant of y to z, w is a
descendant of z; also f(w) = f(z).

We now show that τ consists of t(z), t(w), and some descendants of w in T . A
vertex u ∈ τ − t(w) − t(z) comes from a set t(x), where x ∈ W − t(w) and, without
loss of generality, f(x) /∈ t(x). The latter implies that x is ancestral. This implies u
descends from f(x) in T . Since f(x) descends from w in F it descends from w in T .
Hence u descends from w in T , as desired.

To show the claim actually is not violated, consider a vertex v ∈ τ with f(v) /∈ τ .
Clearly f(v) /∈ t(v), so v is ancestral. We first show that v ∈ t(w) ∪ t(z). Suppose
not. Let x ∈ W ∩ t(v) with f(x) /∈ t(v). (x exists since t(v) �= t(w).) f(x) gets added
to τ since f(x) ∈ W . Furthermore, f(x) = f(v) since both v and x are ancestral. But
this contradicts f(v) /∈ τ .

We have shown either v ∈ t(z) or v ∈ t(w). Also note that v is ancestral, so every
vertex in t(v) descends from I(Pv). We consider four cases depending on how f(z)
relates to t(w) and t(z).

Suppose f(z) ∈ t(w)−t(z). (This is possible even though w descends from z: recall
the above example.) Thus every vertex of t(z) descends from I(Pz), v ∈ t(w) − t(z),
and every vertex of t(w) ∪ Pz descends from I(Pv). The latter implies that every
vertex of τ descends from I(Pv). Thus the claim holds.

The three other possibilities are f(z) /∈ t(w) ∪ t(z), f(z) ∈ t(z) − t(w), and
f(z) ∈ t(w)∩ t(z) (i.e., t(w) = t(z)). The argument for each is similar to the one just
given.

The lemma justifies the term “nonmerging ear”: It is easy to see that Multi-Merge
does not perform any unions for a nonmerging ear.

For the rest of this paper, all sets t(a) refer to their value at the end of Phase
II unless explicitly stated otherwise. The (component) cluster of an ear P with first
vertex a consists of all descendants in F of vertices in I(P) − t(a). For example, in
Figure 2 if Pb ∩ t(a) = {a, c, e}, then the cluster of Pb is {b, d, f, i, j, k}. A cluster
can be empty; i.e., we can have I(P) ⊆ t(a). For instance, any short ear has an
empty cluster. We will be interested only in nonempty clusters, which occur only for
long ears. The next lemma gives basic properties of clusters; the term “cluster” is
motivated by property (ii).

Lemma 4.2. Let K be the cluster of an ear with first vertex a.
(i) K ∩ t(a) = ∅.
(ii) K is a union of connected components of G− t(a).
Proof. Let K be the cluster of ear P .
(i) Suppose y ∈ K ∩ t(a). In F , y has an ancestor x ∈ I(P) − t(a). Now t(y)

contains a, an ancestor of x, but not x itself. This contradicts Lemma 4.1.
(ii) By part (i), it suffices to show that every edge leaving K goes to t(a). A tree

edge leaving K must be an edge of P . Since P ⊆ K ∪ t(a), the edge goes to t(a). Now

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 53

suppose a back edge yb (with b an ancestor of y) leaves K but does not go to t(a).
There are two possibilities.

Case 1. y ∈ K and b /∈ K ∪ t(a).
b /∈ P since P ⊆ K ∪ t(a). Hence b is a proper ancestor of a. Edge yb traverses

t(y), t(a), and t(b). These sets are distinct at the end of Phase II. (b /∈ t(a) by
Case 1, y /∈ t(a) by part (i), and b /∈ t(y) by Lemma 4.1 with a /∈ t(y).) Hence the
sets are distinct when line 2 of Short Ear is executed with x = y and i = 2. Thus
lines 4–5 add a back edge yz with z an ancestor of b. The subsequent execution of
Multi-Merge(y, z) merges t(y) and t(a), which is a contradiction.

Case 2. y /∈ K ∪ t(a) and b ∈ K.
The definition of K implies that b ∈ P . Let x be the deepest ancestor of y in P .

Since y /∈ K, x ∈ t(a). Thus b is a proper ancestor of x. Edge yb traverses t(y), t(x),
and t(b). These sets are distinct at the end of Phase II. (y, b /∈ t(x) = t(a) by Case 2
and b /∈ t(y) by Lemma 4.1 with x /∈ t(y).) Now the argument follows Case 1: Lines
4–5 of Short Ear add a back edge yz with z an ancestor of b, and Multi-Merge(y, z)
merges t(y) and t(x) = t(a), which is a contradiction.

Define

κ = the total number of nonempty clusters.

(See Figure 4.) Call an ear depleted if all its vertices belong to the same t-set. Equiv-
alently, ear P defined by a, y, z is depleted if I(P) ⊆ t(a) (since we always have
z ∈ t(a)). Thus κ equals the number of nondepleted ears.

Lemma 4.3. ε ≥ (3/2)(n− 1 + κ− ν).
Proof. Use the t-partition in the component lower bound. Consider a set t(a).

Let κa nondepleted ears have their first vertex in t(a). Each of these ears gives a
nonempty cluster. All of these clusters for t(a) are pairwise disjoint (Lemma 4.2(i)).
Hence c(G− t(a)) ≥ κa. This gives a total of ≥ κ components in the component lower
bound.

If r /∈ t(a), then t(a) has at least one more component. To prove this, it suffices
to show that r does not belong to any cluster of t(a). This follows since r, as the root
of F , does not descend (in F) from any internal vertex of any ear.

The number of distinct sets t(a) is n decreased by the number of union operations,
n−ν. So the previous observation gives n−ν−1 more components in the component
lower bound. We conclude that the total number of components in the component
lower bound is ≥ κ + n− ν − 1. This gives the lemma.

The following inequality has some slack in it, but see the remark after Lemma 4.5.
Lemma 4.4. κ ≥ µ− ν/2.
Proof. Consider a nonmerging depleted ear P with first vertex a. Since each

internal vertex gets merged into t(a), we can associate |I(P)| unions with P . We will
prove |I(P)| ≥ 2. Since a nonmerging ear is either depleted or nondepleted, we get
2µ ≤ ν + 2κ as desired.

We need only show that a nonmerging ear P with one internal vertex is not
depleted. Let P be a, y, z. Lemma 3.1 shows that y is a leaf of T . So it suffices
to prove the following claim. The claim drops the assumption that a, y, z has one
internal vertex, since we need this more general fact in section 5.

Claim. A nonmerging ear a, y, z with y a leaf has t(y) a singleton.
To prove this, we need only show that Phase II does not add a back edge yw as

a short ear. When ear a, y, z is created, any back edge yw has w either descending
from a or belonging to t(a). So Lemma 4.1 (with x = a) shows that yw only traverses

54 HAROLD N. GABOW

two distinct sets, t(y) and t(w). Thus line 5 of Short Ear does not add a back edge
from y, even when i = 2.

We can now bound the approximation ratio.
Lemma 4.5. The algorithm has approximation ratio ≤ 14/9.
Proof. Define the quantity δ to satisfy

µ− σ − χ = (2/3)γ + δ.(5)

Thus |A| ≤ 2(n− 1) + (2/3)γ + δ. We will show that

(4/3)ε ≥ 2(n− 1) + δ.

The tree carving lower bound ε ≥ 3γ implies (2/9)ε ≥ (2/3)γ. Thus |A| ≤ (4/3 +
2/9)ε = (14/9)ε as desired.

If δ ≤ 0, then the degree lower bound ε ≥ (3/2)n implies (4/3)ε ≥ 2n ≥ 2(n −
1) + δ as desired. Hence we assume δ > 0. Lemmas 4.3 and 4.4 combined give
ε ≥ (3/2)(n− 1 + µ− 3ν/2).

Some algebra shows µ − 3ν/2 ≥ 3δ as follows: Substitute (3) into (5) to get
µ/3 − σ − χ = 2µ/3 + δ or, equivalently,

µ = 2µ + 3(σ + χ + δ).

Combining with (4),

µ− 3ν/2 = µ/2 + 3χ/2 + 3δ ≥ 3δ.

We have shown ε ≥ (3/2)(n + 3δ − 1). Hence (4/3)ε ≥ 2(n + 3δ − 1) ≥ 2(n− 1)
+δ.

As already mentioned, Lemma 4.4 has some slack. However, the interested reader
can check that even if we replace the term µ with γ in that lemma, an argument similar
to the above does not yield a lower approximation ratio.

5. Sharper analysis. This section proves that a natural implementation of the
algorithm has approximation ratio ≤ 3/2. Section 5.1 states three rules we require in
the implementation; it also introduces some basic concepts for the analysis. Section 5.2
discusses how we use the breaking off operation. Section 5.3 proves the 3/2 bound,
assuming a key inequality. Finally, section 5.4 proves the key inequality.

5.1. Algorithm rules and basic notions. We begin with some additional
terminology. We often designate an ear a, y, z as a, z. The last internal vertex of a
long ear (y) is its tip. Each vertex v is uniquely classified as a tip or nontip since
Pv is unique. We often apply terminology for an ear to its tip; e.g., a merging tip is
a tip whose ear is merging. The main issue of section 5 is bounding the number of
nonmerging depleted ears (recall the proof of Lemma 4.4). Towards this end, let Y
denote the set of all nonmerging depleted tips. A child ear of vertex x is a long ear
whose first edge goes to a child of x.

To prove the upper bound, we incorporate several rules specifying choices made
by the algorithm. For each rule, we specify the line number to which it applies.

Rule 1 (line 3(ii) of Long Ear). Once y is chosen, z is chosen so a merging ear
from y merges as many t-sets as possible.

Rule 2 (line 6 of Long Ear). Vertex x progresses through the internal vertices of
Pb in order; i.e., x moves from b to y.

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 55

r

P
x

Fig. 5. t(x) contains the two solid vertices but not the first vertex of P . The root cluster of
t(x) consists of all vertices except the ones on the two heavy paths.

Rule 3 (line 6 of Long Ear). The first child ear of vertex x is merging if possible.
Rule 3 refers to the first child ear created at vertex x. We also call this the first

merging ear at x (Lemma 5.10).
The following simple consequence of line 3(ii) is useful.
Proposition 5.1. Consider a back edge xz, where x properly descends from a

tip y.
(i) If y is nonmerging, then z is a proper descendant of f(y).
(ii) If y is merging, then z descends from f(y) or belongs to t(f(y)).
The analysis of section 4 uses the notion of a cluster of an ear, and the proof of

Lemma 4.3 shows there are additional components containing the root. We will call
these “root clusters,” defined formally as follows. Consider a vertex x �= r that is the
shallowest vertex in t(x). Every vertex in t(x) has an ancestor in t(x) ∩ I(Px). (This
follows from the claim of Lemma 4.1.) The root cluster of t(x) consists of all vertices
that do not descend in F from I(Px) ∩ t(x). (Contrast this with the definition of ear
cluster in section 4; see Figure 5.) Equivalently, the root cluster consists of all vertices
that do not descend in F from a vertex of t(x).

In addition we use the term clusters of t(x) to refer to all clusters associated with
the set t(x); specifically the term refers to the root cluster of t(x) plus the cluster of
each ear a, y, z that has a ∈ t(x).

We will bound the number of nonmerging depleted ears by associating various
sets with them. The following notions are used to accomplish this.

Definition 5.2. For a vertex y ∈ Y ∪ r, Ty denotes the set of all vertices that
descend from y but no deeper vertex of Y ∪ r. The representative vertex of a set is

• for an edge, its deeper vertex;
• for an ear, its first vertex;
• for the cluster C of an ear, the shallowest vertex of C;
• for the root cluster of t(a), the shallowest vertex of t(a);
• for a component C of a t-set, the representative of the cluster containing C.

A set with representative vertex v ∈ Ty is launched by any ancestor of v in Ty. The
set is properly launched if v ∈ Ty − y.

Note that the representative of a short ear e is the same when we consider e to
be an ear or an edge. In the last bulleted item, a component C of t-set t(a) refers to
a connected component of G− t(a) (recall the proof of Lemma 4.3).

Any set S with a representative vertex is launched by exactly one vertex of Y ∪ r.
So S is launched by at most one tip y ∈ Y. This is our mechanism for establishing
“ownership” of sets. Note that, in such an ownership relation, we cannot rely on any
particular relationship between t(y) and any t-set associated with S. For instance, if
S is a cluster of t(a) that is launched by tip y ∈ Y, we might hope that t(y) = t(a),
but this is not true in general.

56 HAROLD N. GABOW

Throughout this entire section we fix a smallest 3-ECSS H of G for the analysis.

5.2. Breaking off operation. Our analysis starts with the t-partition of V
and forms an enhancement, called the t∗-partition, by doing a number of break off
operations. This section describes these operations. It also proves a lemma, allowing
us to enhance the t-partition to the t∗-partition yet carry out the subsequent analysis
by referring only to t-sets.

Section 2 defined the operation of breaking off in general. Now we specify this
operation for our analysis. Initially the t∗-partition is identical to the t-partition. Let
b be a vertex with parent p. To break off vertex b means to replace t∗(p) with t∗(p)−B
and B, for B the set of descendants of b belonging to t∗(p). Vertex b is breakable if

(i) t(p) contains at least one descendant of b;
(ii) at most one component of H − t(p) is adjacent (in H) to both descendants

and nondescendants of b;
(iii) b or p is a tip;
(iv) b /∈ Y.

Conditions (iii)–(iv) can be weakened, but they suffice for our purposes.
The t∗-partition is formed by breaking off zero or more breakable vertices of each

t-set. Let us describe how a t-set, say t(a), gets partitioned into t∗-sets. Choose a
as the shallowest vertex in t(a). Suppose we break off h vertices bi whose parent pi
belongs to t(a), i = 1, . . . , h. The set t(a) gets partitioned into h+1 t∗-sets, specifically
the vertices of t(a) that descend from bi but no deeper bj , for i = 0, . . . , h. Here we
take a to be b0. It is easy to see that condition (i) implies each of these t∗-sets is
nonempty. In Definition 2.5 the parent of the t∗-set of bi is t∗(pi) (i ≥ 1).

Lemma 5.3. Suppose the t∗-partition is defined by breaking off ≤ 1 breakable
vertex in each set Ty.

(i) The t∗-partition is an enhancement of the t-partition (in graph H).
(ii) If no vertex of Ty is broken off, then an edge properly launched by y with both

ends in the same t-set is a nonbridging edge (of the t∗-partition).
(iii) Suppose y launches a bridging component C of H − t(a) for some vertex a.

Then a vertex b ∈ Ty whose parent belongs to t(a) was broken off and C is adjacent
to both descendants and nondescendants of b.

Proof. For any y ∈ Y ∪ r, let T y be the set Ty enlarged at its leaves; i.e., add to
Ty each w ∈ Y having f(w) ∈ Ty. Let Xy = I(Py)∪T y. (For y = r recall I(Pr) = ∅.)

Claim 1. For any vertex a, t(a)∩Xy is contained either in one t∗-set or in some
t∗-set and its parent set.

Proof. The only possible breakable vertices of Xy are the breakable vertices b of
Ty and the first vertex b′ of I(Py) (recall (iii)–(iv) of the definition). If we break off
b′, t(a)∩Xy is still contained in one t∗-set. If we break off a vertex b ∈ Ty with parent
p, the t∗-set changes only if p ∈ t(a). In that case, t(a) ∩Xy is contained in a t∗-set
descending from b and its parent set t∗(p).

Claim 2. An edge vz with deeper vertex v ∈ t(z) either has both ends in the same
t∗-set or joins a t∗-set and its parent set.

Proof. Choose y so v ∈ T y − y. Proposition 5.1(i) shows z ∈ Xy. Together with
Claim 1 this implies Claim 2.

Claim 2 gives condition (i) of Definition 2.5 for the t∗-partition. It also gives (ii)
of the current lemma.

Claim 3. Consider a cluster C of t(a) with representative vertex c. Suppose
c ∈ Ty − y for y ∈ Y ∪ r. Then any edge with exactly one end in C has the other end
in Xy.

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 57

Proof. We remind the reader that C is either a root cluster or an ear cluster. Our
assertions must be checked in both cases! For root clusters it is convenient to refer to
Figure 5.

We begin by noting that vertex y of the claim always exists; this is equivalent to
c /∈ Y ∪ r. Pc is not depleted (for both cluster types). This implies c /∈ Y. c �= r
follows from the fact that r is not the representative of any cluster (of either type).

Now let vz be an edge, with deeper vertex v, having exactly one end in C. (That
end can be v or z.) Suppose v is a proper ancestor of c. If C is an ear cluster, this
implies v, z /∈ C. If C is a root cluster, it implies v, z ∈ C. In both cases, vz violates
its definition. So assume that v descends from c.

Since c �= y, we have v �= y. If v ∈ T y − y, then z ∈ Xy (Proposition 5.1(i)) and
the claim holds (regardless of which vertex is in C). So assume that v is a proper
descendant of some w ∈ T y ∩ Y − y.

Let b be the first vertex of I(Pw). We show that (a) b is an ancestor of z, (b) b /∈ Pc,
and (c) b descends from c. (a) follows from the definition of b and Proposition 5.1(i).
(b) follows since Pc is not depleted but Pw is. For (c), recall our assumption that v
descends from c. The tree path from v to c enters Ty along Pw and then goes to Pc.
(c) follows.

(b) and (c) imply either that all descendants of b belong to C or that none do
(for either ear type). With (a) this makes vz violate its definition.

Now consider a component C of H−t(a). Since C is contained in a cluster, Claims
3 and 1 show that all the neighbors of C belong either to the same t∗-set or to some
t∗-set and its parent. Together with condition (ii) of the definition of breakable, this
gives condition (ii) of Definition 2.5. It also gives (iii) of the current lemma.

5.3. The approach. In the following definitions we fix a t∗-partition formed
according to Lemma 5.3. If a cluster of t(x) contains 1 + s connected components of
H − t(x), it has s surplus components. If 3 + s edges of H cover an edge e ∈ C, then
e is redundantly covered s times. Define

κ = the number of nondepleted ears,
plus the number of surplus components in clusters;

β = the number of break offs that form the t∗-partition;
θa = the total number of surplus edges for all nonbridging components of H;
θb = the number of nonbridging edges of H;
θc = the number of edges of H not covering an edge of C

or redundantly covering an edge of C;
θd = the number of vertices that have degree > 3 in H.

(Subscript b stands for “both ends,” c stands for “carving,” and d stands for “degree.”)
Our new definition of κ generalizes the definition in section 4. β, θa, and θb are defined
as at the end of section 2.

The next section bounds the number of nonmerging ears, showing

µ ≤ κ + χ + β + θd + (θa + 2θb + θc)/3.(6)

We now demonstrate that this implies the approximation ratio is ≤ 3/2.
We use the following three lower bounds:

ε ≥ 3γ + θc;(7)

ε ≥ (3/2)n + θd/2;(8)

ε ≥ (3/2)(n− 1 + κ + β − ν) + θb + θa/2.(9)

58 HAROLD N. GABOW

It is clear that (7) and (8) are true. To prove (9), recall that Lemma 4.3 is proved
using the component lower bound. Instead use (2), which is our extension of the
component lower bound. Inequality (9) follows easily.

Define the quantity δ to satisfy

µ− σ − χ = γ/2 + δ.(10)

(δ may be positive, negative, or 0.) Thus

|A| ≤ 2(n− 1) + γ/2 + δ.

Combining 1/6 times (7) with 4/3 times (8) gives (3/2)ε ≥ 2n+γ/2+ θc/6+(2/3)θd.
Hence we can assume

δ > θc/6 + (2/3)θd

since otherwise we are done. To handle this case we will show that (7) and (9) imply

(3/2)ε ≥ 2(n− 1) + γ/2 + 4δ − 2θd − θc/2.(11)

Inequality (11), together with our assumption 3δ > θc/2 + 2θd, implies the desired
result.

We begin by reexpressing µ as follows: Substitute (3) into (10) to get µ/2−σ−χ =
µ/2 + δ or, equivalently, µ = µ + 2(σ + χ + δ). Combining with (4), we have

µ− ν − χ = 2δ.

Combining this with (6) gives

κ + β − ν ≥ µ− χ− ν − θd − (θa + 2θb + θc)/3 = 2δ − θd − (θa + 2θb + θc)/3.

Thus (9) gives

ε ≥ (3/2)(n−1+2δ−θd−(θa+2θb+θc)/3)+θb+θa/2 = (3/2)(n−1+2δ−θd−θc/3).

Combining 4/3 times this inequality with 1/6 times (7) gives the desired inequality
(11).

5.4. Bounding |Y|. We begin by noting that this section is concerned with both
the given graph G and the fixed 3-ECSS H. Proposition 5.4 and Lemmas 5.5–5.9 are
properties of G alone. The last three results, Lemmas 5.10–5.12, depend on H.

Proposition 5.4. Let a 3-edge connected graph G = (V,E) have degree function
d. Suppose sets X,X ′, and x form a partition of V, and d(x) = 3. Then d(X,X ′) ≥ 2.

Proof. Without loss of generality, assume d(x,X) ≤ 1. Hence 3 ≤ d(X) =
d(X,X ′) + d(X,x) ≤ d(X,X ′) + 1 as desired.

A long ear is tight if its last tree edge is a carving edge. Otherwise the ear is
loose. Every pendant edge of T is obviously tight. The following lemma generalizes
this fact.

Lemma 5.5. The tip of a loose ear has a merging child ear.
Proof. Let the loose ear contain the carving edge vw, and let its last edge be xy.

Thus y is the ear’s tip; possibly w = x. Consider the depth-first search of Phase I that
finds carving edges. Edge xy does not force a back edge to be added. So the search
added a back edge uz from a descendant u of y to an ancestor z of x. Furthermore,

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 59

the tree path from y to u contains a carving edge. When Long Ear constructs Py,
y, u, z is a possible merging ear at y. So Rule 3 shows y has a merging child.

We note a related property for use in Lemma 5.9. A tight ear has only nonmerging
children. This follows since a back edge covers at most one carving edge.

Lemma 5.6. Let y be a nonmerging tip. An ear of A with its first vertex descend-
ing from y has its last vertex properly descending from f(y).

Proof. Let the ear be a, u, z and, for the sake of contradiction, assume z is an
ancestor of f(y). Since u is a descendant of y, Proposition 5.1(i) implies u = y. Since
u descends from a, we get a = y; i.e., the ear is short. But the algorithm never adds
a short ear originating at a nonmerging tip (this is proved in the claim of Lemma
4.4).

The next lemma consists of two similar parts. After stating the lemma we give
an example showing that a plausible generalization is false.

Lemma 5.7. Let an ear P have first vertex a and tip u.
(i) The first ear that adds a vertex of I(P) to t(a) is launched by a.
(ii) The first ear that adds a proper ancestor of u to t(u) is launched by u.
Example 1. For an arbitrary vertex x, the first ear that adds a proper ancestor

of x to t(x) need not be launched by x. In Figure 2 take x to be d. Let e ∈ Y. After
the short ear h, c is added the short ear g, d adds c to t(d). But g, d is launched by
e and is not launched by d. A similar example uses merging ears: The first merging
ear goes from e to c and the second from e to d.

Proof. (i) Consider the first execution Multi-Merge(b, z) that adds a vertex of
I(P) to t(a). b descends from I(P) and z is an ancestor of a. We claim that ear b, z
was launched by the first vertex of I(P). (This is slightly stronger than the lemma.)
We prove this by showing that the tree path from a to b does not contain a vertex
w ∈ Y − a.

Suppose w exists. f(w) is a descendant of a (possibly equal to it). So Lemma 5.6
shows z is a proper descendant of a, which is a contradiction.

(ii) Consider the first execution Multi-Merge(b, z) that adds a proper ancestor of
u to t(u). b descends from u and z is a proper ancestor of u. Suppose the tree path
from u to b contains a vertex w ∈ Y − u. Since u is a tip, f(w) is a descendant of u
(possibly equal to it). So Lemma 5.6 shows that z is a proper descendant of u, which
is a contradiction.

Remark. The stronger version of the lemma that we proved leads to a stronger
version of Lemma 5.8, but we do not require it.

A surplus ear is a merging or short ear that causes a surplus union (i.e., a union
counted in χ).

Lemma 5.8. Suppose y ∈ Y does not launch a surplus ear and some back edge
xz has x ∈ Ty − y.

(i) If z is an ancestor of f3(x), then f3(x) launches a merging ear.
(ii) If z is a proper ancestor of f2(x) and f2(x) is a tip, then f2(x) launches a

merging ear.
Remark. A plausible common generalization of (i)–(ii) fails: Assuming the lemma’s

hypothesis, z can be a proper ancestor of f2(x) without f2(x) launching a merging
ear. For instance, let xz be the back edge jc in Figure 2, and assume the merging
ear scenario of Example 1.

Proof. Proposition 5.1(i) shows that z is a proper descendant of f(y). Hence any
vertex f i(x) that descends from z, properly or not, belongs to Ty, e.g., i ≤ 3 in (i)
and i ≤ 2 in (ii).

60 HAROLD N. GABOW

(i) Suppose f3(x) does not launch a merging ear. We prove the lemma by showing
y launches a surplus ear. Lemma 5.7(i) shows that x, f(x), f2(x), and f3(x) are in
distinct t-sets at the end of Long Ear. Hence Lemma 5.7(i) implies f3(x) launches a
surplus ear during Short Ear(s, 3)—either before x is scanned or when a back edge
at x (e.g., xz) is added as a short ear.

(ii) The argument is similar to (i). Suppose f2(x) does not launch a merging ear.
We show y launches a surplus ear. Lemma 5.7(i)–(ii) shows that x, f(x), f2(x), and
z are in distinct t-sets at the end of Long Ear. Hence Lemma 5.7(i)–(ii) implies that
f2(x) launches a surplus ear during Short Ear(s, 3)—either before x is scanned or
when a back edge at x (e.g., xz) is added as a short ear.

An ear P with first vertex a is penetrated if I(P) ∩ t(a) �= ∅.
Lemma 5.9. A nonleaf tight tip either launches a surplus ear or has a penetrated

child ear.
Proof. Let u be a nonleaf tight tip. In this proof, say that t(u) is enlarged by

ear b, z if the execution Multi-Merge(b, z) changes t(u) from a singleton set to a
nonsingleton. Clearly, in this case z is an ancestor of u, which is an ancestor of b.
If b �= u, then some vertex x with f(x) = u gets added to t(u). This makes Px a
penetrated child ear of u.

The rest of the argument is in three cases. First suppose t(u) is enlarged by a
merging ear b, z. No child ear of u is merging (as remarked after Lemma 5.5). So b
properly descends from u. The opening remark gives the lemma.

Suppose t(u) is enlarged during Short Ear(s, 3) by a short ear b, z. Either b �= u
or u launches a surplus ear. In both cases the lemma holds.

Finally, suppose t(u) is a singleton at the end of Short Ear(s, 3). Let P be the first
child ear of u. Some back edge xz joins a descendant x of I(P) to a proper ancestor z
of u, since G has no articulation point. Since Short Ear(s, 2) works bottom-up, some
short ear launched by a descendant of I(P) enlarges t(u). (This either occurs before
x is scanned or when a back edge at x, e.g., xz, is added as a short ear.) Again the
lemma holds.

Lemma 5.10. Suppose y ∈ Y does not launch a surplus component or a surplus
ear. If the first merging ear at a given vertex of Ty is depleted and its tip u is a leaf,
then u is breakable.

Proof. Let a = f(u). Thus a ∈ Ty ∩ t(u). We claim u is adjacent to at most one
cluster C of t(u); furthermore

C ∩ Pa �= ∅

if C exists. This claim implies the lemma. To prove this, we need only verify condition
(ii) of the definition of breakable. (For condition (i) note that the parent of u belongs to
t(u).) Assume C exists; otherwise, condition (ii) is vacuous. The above set inequality
makes Pa nondepleted (since it contains vertices of two t-sets). Hence f(a) ∈ Ty,
and C (root cluster or ear cluster) is launched by y. Now the lemma’s hypothesis
shows that C consists of exactly one component of H − t(u). Hence (ii) holds and u
is breakable.

To prove the claim, first suppose f(a) /∈ t(u). So any ancestor of u belongs to
t(u) or to the root cluster C of t(u). Since f(a) ∈ C, we have C ∩ Pa �= ∅, and the
claim holds.

Next suppose f(a) ∈ t(u). Consider an edge uz with z /∈ t(u), and suppose z
does not descend from f(a). When ear Pu is created, t(a) is a singleton by Rules
2–3. Hence a, f(a), and z are in distinct t-sets at that time. (Note that at the end
of Phase II, t(u) = t(a) = t(f(a)), so z /∈ t(f(a)).) Rule 1 shows Pu is a surplus ear.

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 61

But the lemma assumes this is not the case (recall a ∈ Ty). Hence z descends from
f(a). We conclude that cluster C of Pa is the only cluster of t(u) that is adjacent to
u. Obviously C ∩ Pa �= ∅ if C �= ∅.

For any y ∈ Y define

κ(y) = the number of merging nondepleted ears launched by y
plus the number of surplus components launched by y;

χ(y) = the number of surplus ears launched by y;
β(y) = the number of breakable vertices in Ty − y;
θa(y) = the number of surplus edges of H leaving components launched by y;
θb(y) = the number of edges of H properly launched by y

having both ends in the same t-set;
θc(y) = the number of edges of H launched by y not covering a carving edge

or redundantly covering a carving edge launched by y;
θd(y) = the number of vertices of Ty having degree > 3 in H.

χ(y) is the only one of the above quantities that is a function of G, not H. None of
the quantities involve the t∗-partition. The definitions of κ(y), θa(y), and θb(y) differ
slightly from their counterparts in section 5.3. The differences are reconciled in the
last argument of this section.

Lemma 5.11. For y ∈ Y let u ∈ Ty be the tip of a depleted ear. Suppose u does
not launch a merging ear and u has a penetrated child ear. Then either

(i) u has a breakable child belonging to Ty, or
(ii) θa(y) + 2θb(y) + θc(y) ≥ 3, or
(iii) κ(y) + χ(y) + θd(y) ≥ 1.
Proof. The argument is illustrated in Figure 6. Lemma 5.5 shows u is tight. Let

U be the set of proper ancestors of u. Consider the components of H − t(u). For an
arbitrary ear X, CX denotes the cluster of X (which may be empty). For S ⊆ V , S
denotes V − S. We assume the lemma is false and derive a contradiction.

Claim 1. If S is the set of all descendants of a child of u, then dH(S,U) ≥ 2.
Furthermore each edge from S to U is launched by y.

Proof. For the first part we have dH(u) = 3, since otherwise θd(y) ≥ 1 and (iii)
holds. Now Proposition 5.4 shows dH(S,U) = dH(S, S − u) ≥ 2.

For the second part, an edge e from S to U is launched by y since u is tight and
e cannot cover two carving edges.

Remark. If u has ≥ 3 children, the claim shows θc(y) ≥ 3 and we are done.
However, we do not use this principle.

The rest of the argument focuses on P , a penetrated child ear of u. Let p be the
tip of P . Let D be the set of all descendants of the child of u that belongs to P .

Claim 2. Let xz be an edge of G with x ∈ D, z ∈ D.
(a) z ∈ t(u).
(b) Suppose x is a proper descendant in F of a vertex w ∈ P . Then w �= p, the

tree path from w to x contains no carving edge, and x ∈ Ty.
(c) x belongs to P or a child ear of I(P). In the latter case z = u.
Proof. (a) Since u is depleted, this part follows from Proposition 5.1(i)–(ii).
(b) Since P is nonmerging, w �= p by Proposition 5.1(i). Hence w ∈ Ty. The

lemma’s hypothesis shows w is not the first vertex of a merging ear. So Rule 3 implies
there is no carving edge on the tree path from w to x. This makes x ∈ Ty.

(c) First suppose x is a proper descendant of a child ear of I(P). (b) implies
x ∈ Ty. Now Lemma 5.8(i) and the hypothesis of our lemma show y launches a
surplus ear. Thus χ(y) ≥ 1, and (iii) holds.

62 HAROLD N. GABOW

Q

C P

D

U

p
P

S

q

u

Fig. 6. Proof of Lemma 5.11. Hollow vertices are not in t(u). Heavy lines denote carving edges.

Next suppose x belongs to a child ear of I(P) and z ∈ U . As before, x ∈ Ty.
Since u is a tip, Lemma 5.8(ii) and the hypothesis of our lemma show y launches a
surplus ear. This gives (iii).

Claim 3. P is nondepleted and tight. Hence cluster CP is nonempty.
Proof. If P is depleted, then by Claims 2(a) and 2(c) the two edges of Claim 1

have both ends in t(u). The deeper end of each edge belongs to Ty − y since u is
tight and no edge covers two carving edges. This makes θb(y) ≥ 2, so (ii) holds. We
conclude P is nondepleted.

This implies p ∈ Ty. Hence p does not have a merging child. Lemma 5.5 shows
P is tight.

Claim 4. H has an edge with deeper end in D ∩ Ty that does not cover a carving
edge. So θc(y) ≥ 1.

Proof. The child of u on P is not breakable (otherwise (i) holds). Since P is
penetrated, this means ≥ 2 components of H − t(u) are adjacent (in H) to both D
and D. Since CP is launched by y, it does not contain a surplus component (otherwise
κ(y) ≥ 1 and (iii) holds). So another cluster of t(u), root or ear, is adjacent to both
D and D. Claim 2(a) shows the cluster is CQ for an ear Q descending from I(P).
Claim 2(c) shows Q is a child ear of I(P) and a vertex q ∈ CQ ∩ Q is adjacent to u
in H. Since P is tight, Claim 2(b) shows qu does not cover a carving edge. It also
shows q ∈ Ty. Hence θc(y) ≥ 1. Claim 4 follows.

Claim 5. Every edge from D to D in H goes from a cluster of t(u).
Proof. Let xz be an edge of H with x ∈ D and z ∈ D. Assume x ∈ t(u); otherwise

we are done. Claim 2(a) shows z ∈ t(u). Now it suffices to show x ∈ Ty. For that
makes θb(y) ≥ 1 which, with θc(y) ≥ 1 (Claim 4), gives (ii).

If x ∈ P , then Claim 3 shows x ∈ Ty. If x /∈ P , then Claims 2(b) and 2(c) show
x ∈ Ty.

Claim 6. dH(CP , U) ≥ 2. dH(CP , D − CP) ≥ 2. Hence θa(y) ≥ 1.
Proof. Claim 1 shows that at least two edges e of H join D and U . Claim 5 shows

each e has exactly one end in a cluster C of t(u) with C ⊆ D. Now Claim 2(c) shows

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 63

C = CP . So the two edges e give the first assertion of Claim 6.
For the second assertion, first note that D − CP �= ∅ since P is penetrated. We

have already assumed dH(u) = 3. By the preceeding paragraph, an edge of H leaving
D−CP does not go to U . Since V is partitioned into sets D−CP , X = V−(D−CP)−u,
and u, Proposition 5.4 shows dH(D − CP , CP) = dH(D − CP , X) ≥ 2.

We turn to the third assertion of Claim 6. CP is launched by y, and we have
already noted that it does not contain a surplus component (Claim 4). Hence θa(y) ≥
1.

Claim 7. u has only one child. dH(U, u) ≤ 1.
Proof. Suppose either part of the claim is false. We first show at least four edges

of H launched by y cover the carving edge of Pu. If u has two children, this follows
from Claim 1. If dH(U, u) ≥ 2, it follows from these two edges plus Claim 1 applied
to D.

Now Claim 4 shows θc(y) ≥ 2. With θa(y) ≥ 1 (Claim 6) we get (ii).
Claim 8. dH(D,u) ≤ 1.
Proof. Claim 5 shows dH(D,u) =

∑
{dH(C, u) : cluster C ⊆ D}. First consider

C = CP . If dH(CP , u) ≥ 1, then five edges leave CP (Claim 6) so θa(y) ≥ 2. With
θc(y) ≥ 1 (Claim 4), we get (ii). We conclude dH(CP , u) = 0.

Next consider C �= CP . Claim 2(b) shows that an edge from C to u does not
cover a carving edge and, further, C is launched by y. If H contains two such edges,
then θc(y) ≥ 2, and θa(y) ≥ 1 (Claim 6) gives (ii). We conclude there is only one such
edge, as desired.

Claims 7 and 8 show dH(u) ≤ 2, the desired contradiction.
Lemma 5.12. Any tip y ∈ Y has

(κ + χ + β + θd)(y) + (θa + 2θb + θc)(y)/3 ≥ 1.

Proof. Assume κ(y) = 0; otherwise we are done. Hence any merging ear launched
by y is depleted. Choose vertex u ∈ Ty to be the tip of a depleted ear as follows. If y
does not launch a merging ear, then u = y. In the opposite case, choose u as the tip
of a merging ear a, u, z, where a ∈ Ty has the greatest depth possible. If two merging
ears have the same first vertex a, choose u on the first merging ear at a.

Vertex u belongs to Ty. Hence it does not launch a merging ear. Lemma 5.5
shows u is tight. Now consider two cases.

First suppose u is a leaf. Pu is merging since a nonmerging depleted tip is not a
leaf (by the claim of Lemma 4.4). Assume χ(y) = 0; otherwise we are done. Since
κ(y) = 0, Lemma 5.10 shows that u is breakable. Hence β(y) ≥ 1.

Now suppose u is not a leaf. Since we are assuming χ(y) = 0, Lemma 5.9 shows
that u has a penetrated child ear. Now the desired conclusion follows from Lemma
5.11.

We can now achieve the goal of proving inequality (6). Recall the definitions
of all the right-hand quantities from section 5.3. Apply Lemma 5.12 to each y ∈ Y.
Define the t∗-partition by breaking off a breakable vertex in Ty−y whenever β(y) ≥ 1.
Lemma 5.3(i) shows that this gives a valid enhancement. This defines the quantity β
of (6).

Clearly ∑
{χ(y) : y ∈ Y} ≤ χ.

(Inequality may hold since we ignore surplus ears launched by r and, further, we do
not count the total number of surplus unions.) Analogous inequalities hold for θc and

64 HAROLD N. GABOW

θd. Lemma 5.3(ii) shows ∑
{θb(y) : y ∈ Y, β(y) = 0} ≤ θb.

Lemma 5.3(iii) shows the analogous inequality for θa. Let µn be the number of
nonmerging nondepleted ears. Then∑

{κ(y) : y ∈ Y} ≤ κ− µn.

Since |Y| = µ− µn, Lemma 5.12 implies

µ− µn ≤ κ− µn + χ + β + θd + (θa + 2θb + θc)/3.

This amounts to (6).

6. Efficient implementation. This section presents an implementation of the
algorithm that runs in time O(mα(m,n)). It is straightforward to find the bicon-
nected components and implement Phases I and III in linear time. So we limit our
attention to Phase II. The implementation must incorporate Rules 1 and 3 of section 5
(Rule 2 is trivial). This section first describes how the t-partition is maintained and
manipulated. Then it describes how long ears are constructed. The remaining details
of Figure 3 are obvious.

6.1. The t-partition. We maintain the t-partition using the following proper-
ties of F . For any vertex x, let �(x) be the ancestor of x in F that belongs to t(x) and
has minimum depth. Lemma 4.1 shows that t(x) contains every vertex on the path in
F from x to �(x). Write fl(x) for f(l(x)). Note that every y ∈ t(x) has f�(y) = f�(x).
(Recall Figure 5.) In the following lemma assume f(r) = r.

Lemma 6.1. For any i ≥ 0, a back edge xz traverses > i+1 distinct t-sets if and
only if z is an ancestor of [f�]i(x) in T and z /∈ t([f�]i(x)).

Proof. If r /∈ t(x), then the deepest ancestor of x in F not belonging to t(x) is
fl(x). Hence for i ≥ 1, if r /∈ t([fl]i−1x), then the path in F from x to [fl]i(x) con-
tains vertices in exactly i + 1 distinct t-sets. If z is an ancestor (in T) of [fl]i(x)
but not [fl]i+1(x) and z /∈ t([fl]i(x)), then an edge xz traverses exactly i + 2
t-sets.

The t-partition is maintained by a disjoint-set data structure. In addition, each
set t(x) is labelled by the node f�(x). As already noted, this label is well defined. The
labels allow Multi-Merge to be implemented using a number of finds proportional to
the number of unions. Line 3 of Short Ear is implemented using Lemma 6.1. It
performs O(1) finds per back edge, since i equals 2 or 3. Line 3(i) of Long Ear uses
one find per back edge.

To implement Rule 1 in line 3(ii) of Long Ear, tentatively choose the back edge yz
from y that has z /∈ t(a) and minimum d(z). (Throughout this section d(v) denotes
the depth of vertex v in tree T , as in section 3.) Find the maximum index i with
vertex v = [fl]i(a) descending from z. A merging ear with tip y merges at most i+ 2
t-sets. Any back edge yz′ with z′ an ancestor of v and z′ /∈ t(v) gives such an ear. If
no such z′ exists, the back edge yz gives an ear merging i + 1 t-sets, the maximum
possible in this case. In either case, Multi-Merge performs at least i unions for this
ear.

We conclude that the disjoint-set data structure performs a total of O(m) find
operations in a universe of n elements. Thus the total time for manipulating the
t-partition is O(mα(m,n)) [1].

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 65

6.2. Constructing long ears. This section describes how lines 2–3 of Long Ear

find edge c ∈ C and back edge yz to construct the new ear. We accomplish this in
linear time, implying the desired time bound for Phase II.

At any point during the execution of Long Ear, let R be the subtree of edges of
T that already belong to long ears. The idea of the implementation is to maintain an
“active” subtree S, R ⊆ S ⊆ T . When xx′ is chosen in Long Ear (line 6), the subtree
of S rooted at x′ will lead to the edges of C that can be covered by new ears having
xx′ as their first edge. We now provide the details.

Phase I labels each back edge e with the carving edge c[e] covered by e, if it exists;
if not, then c[e] = Λ. It is easy to do this labelling in linear time after identifying the
connected components of T − C.

In Phase II, say that vertex x gets visited the first time it is reached in line 6 of
Long Ear. Also, as we have implicitly done, say that a back edge is directed to its
shallower vertex. Long Ear maintains a list L[c] for each c ∈ C, defined by

L[c] = {e : e is a back edge covering c and directed to an already visited vertex}.

Subtree S is maintained according to the following invariant.
S-Invariant. The pendant edges of S − R are precisely the edges of c ∈ C − R

with L[c] �= ∅.
Long Ear constructs L lists and grows S as follows. When line 6 visits x, it first

does some processing, described below, that implements Rule 3. Then it scans each
back edge e directed to x. If c[e] �= Λ, do the following: Add e to L[c[e]]. If c[e] is not
in S, join it into S by the tree path to its first ancestor already in S.

This procedure maintains the definition of L. It also preserves the S-Invariant,
since the definition of tree carving shows the edges added to S do not descend from
a pendant edge of S −R.

In order to implement Rule 3, we use another variable, edge c∗. If c∗ is defined,
then it is used as edge c of line 2 to form the merging ear required by Rule 3. We
define c∗ when visiting x. The complete procedure for visiting x is as follows.

When x is first reached in line 6, if x already has descendants in S not in Px,
follow a path in S from x to a pendant edge. Take that pendant edge to be c∗. Then
scan the back edges directed to x, as described above. Finally, if c∗ is defined, choose
x′ (for the first child ear at x) as the child of x that is an ancestor of c∗. Otherwise
choose x′ arbitrarily.

Note that when this procedure begins, all proper ancestors of x have been visited
(by Rule 2) but no descendant of x has been visited. Hence for every edge c ∈ C −R
descending from x, L[c] contains precisely the edges that can be used to form a
merging child ear at x (by the definition of L). If such a c exists, the procedure’s edge
c∗ qualifies, since the S-Invariant guarantees that c∗ ∈ C and L[c∗] �= ∅.

Now we describe the implementation of lines 2–3 of Long Ear(b). The purpose of
line 2 is to define c. If c∗ is defined, then c = c∗. This gives a merging ear, satisfying
Rule 3.

If c∗ is not defined, then follow a path in S from b to a pendant edge of S. Take
that edge as c. The S-Invariant guarantees that c ∈ C and L[c] �= ∅. Furthermore,
any edge of L[c] can be used to form an ear Pb. This follows from the definition of
L[c], since a and all its ancestors have been visited, but no descendant of b has been
visited.

Next we describe line 3. If L[c] contains an edge yz with z /∈ t(a), choose one with
maximum d(y) to define a merging ear. Otherwise choose any edge yz ∈ L[c] with

66 HAROLD N. GABOW

maximum d(y) to define a nonmerging ear. In both cases, 3(ii) is satisfied. Note that
for merging ears the procedure described in section 6.1 determines the final merging
ear. Finally, line 4 adds the tree path from b to y to both R and S.

Appendix A. Analysis for k-edge connectivity. This appendix extends the
analysis of section 5 to k-edge connectivity. Specifically, let B denote the set of nontree
edges in the approximation algorithm’s solution graph. (B consists of all edges added
after Phase I.) We show that for any integer k ≥ 3,

|B| ≤ (5/2k) εk.(12)

(It is easy to see that this implies |A| ≤ (9/2k)εk. So for k = 3 we again have a 3/2
performance ratio.) This result is used in [5] to get an approximation algorithm for
k-ECSS. We still assume Rules 1–3 of section 5.1 are used in the algorithm, but there
are no other additional rules.

The core of the derivation is a new version of Lemma 5.11. (Taking k = 3, the
new version can replace the one in section 5, but the new argument is slightly longer.)
There are a number of additional changes, but all changes are in sections 5.3 and 5.4.
The new versions of these sections are Appendices A.1 and A.2, respectively.

A.1. The approach for general k. We make some small changes in the def-
initions of our fundamental quantities as follows: If k + s edges of H cover an edge
e ∈ C, then e is redundantly covered s times. A vertex with degree k + s in H has
surplus degree s. Quantities κ, β, θa, θb, and θc are defined exactly as before. (For θc
use the new definition of redundant covering.) The new definition of θd is

θd = the total surplus degree of all vertices in H.

We modify the key inequality (6) in two ways, changing a factor 3 to k and changing
the term involving θd as follows:

µ ≤ κ + χ + β + (θa + 2θb + θc + θd)/k.(13)

The proof that this inequality implies (12) is entirely analogous to the proof given in
section 5.3. For completeness, the rest of this section gives all the details.

Our three lower bounds are

εk ≥ kγ + θc;(14)

εk ≥ (k/2)n + θd/2;(15)

εk ≥ (k/2)(n− 1 + κ + β − ν) + θa/2 + θb.(16)

It is obvious that (15) holds for the new definition of θd. The two other inequalities
are the same as in section 5.3 with the factor 3 changed to k.

For convenience we restate here the previous equation defining δ as follows:

µ− σ − χ = γ/2 + δ.(17)

The definition of B gives

|B| ≤ γ + σ + (n− 1 − ν) = n− 1 + µ− σ − χ = n− 1 + γ/2 + δ.

Combining 1/(2k) times inequality (14) with 2/k times inequality (15) gives (5/2k) εk ≥
n + γ/2 + θc/(2k) + θd/k. Hence we can assume

δ > θc/(2k) + θd/k

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 67

since otherwise we are done. To handle this case, we will show that (14) and (16)
imply

(5/2k) εk ≥ n− 1 + γ/2 + 2δ − θc/(2k) − θd/k.(18)

Inequality (18), together with our assumption on δ, implies the desired result.
Reexpress µ exactly as in section 5.3 as follows: Substituting (3) into (17) and

using (4) gives

µ− ν − χ = 2δ.

Combining this with (13) gives

κ + β − ν ≥ µ− χ− ν − (θa + 2θb + θc + θd)/k = 2δ − (θa + 2θb + θc + θd)/k.

Thus (16) gives

εk ≥ (k/2)(n−1+2δ−(θa+2θb+θc+θd)/k)+θa/2+θb = (k/2)(n−1+2δ−(θc+θd)/k).

Combining 2/k times this inequality with 1/(2k) times (14) gives the desired inequality
(18).

A.2. Bounding |Y| for general k. As in section 5.4, we still deal with the
given graph G and the fixed 3-ECSS H. We do not use Proposition 5.4. Lemmas 5.5–
5.9 are properties of G alone and do not involve the connectivity of G, so they are
still valid. Lemma 5.10 involves H but not its connectivity, so it is still valid. Our
analogue of Lemma 5.11 uses the same quantities κ(y), χ(y), β(y), θa(y), and θb(y).
The two remaining quantities are defined slightly differently as follows:

θc(y) = the number of edges of H launched by y not covering a carving edge
or redundantly covering the carving edge of an ear launched by y;

θd(y) = the total surplus degree of vertices of Ty in H.

The new definition of θd(y) makes it consistent with θd. The definition of θc(y) differs
from section 5.4 in a substantive way: It associates a carving edge vw that has v ∈ Ty

and w ∈ Y with y rather than with w as in section 5.4.
Lemma A.1. For y ∈ Y let u ∈ Ty be the tip of a depleted ear. Suppose u does

not launch a merging ear and u has a penetrated child ear. Then either
(i) u has a breakable child belonging to Ty, or
(i) θa(y) + 2θb(y) + θc(y) + θd(y) ≥ k, or
(iii) κ(y) + χ(y) ≥ 1.
Proof. As in Lemma 5.11, we argue by contradiction. As in that lemma, u is

tight. We use the same notation U , CX , S, P , p, D with one change noted at the
beginning of Case 2 below. We use Claims 2 and 4 but no others. Their proofs are
unchanged. The proof of Claim 4 shows that there is an ear Q with first vertex in P ,
nonempty cluster CQ, and vertex q ∈ CQ ∩Q ∩ Ty adjacent to u in H. Furthermore,
edge qu does not cover a carving edge. Throughout this proof we write d for the
degree function in H, dH .

Case 1. P is depleted.
We show that (ii) holds in this case, more specifically, 2θb(y) + θd(y) ≥ k. Claim

2(c) and the fact that H is k-edge connected implies these two inequalities:

d(D) = d(P,U) + d(D,u) ≥ k,
d(D + u) = d(P,U) + d(u,D) ≥ k.

68 HAROLD N. GABOW

p
P

A B
R

wvD
a

U u

Fig. 7. Proper child ear R.

Adding them gives 2d(P,U)+d(u) ≥ 2k. With θd(u) = d(u)−k this gives 2d(P,U)+
θd(y) ≥ k. Now it suffices to show that every edge xz ∈ E(H) from P to U is counted
in θb(y). This requires that (a) x and z belong to the same t-set, and (b) xz is properly
launched by y, i.e., x ∈ Ty − y. For (a) observe that Claim 2(a) shows z ∈ t(u), and
P depleted shows x ∈ t(u). For (b) observe that x �= p since otherwise edge xz covers
two carving edges (recall Figure 6).

Case 2. P is nondepleted.
As in Claim 3, the assumption implies P is tight. Consider (see Figure 7) a child

ear R of P whose first vertex is a and whose carving edge is vw (with v the parent
of w as usual). Say R is a proper child ear of P if a �= p, u, v. For instance, the ear Q
from Claim 4 is proper, by Claim 2(b).

Now consider a proper child ear R of P . Redefine D to be the set of all descendants
of I(R). (We will manipulate this new D in a manner analogous to the original D
in Case 1.) Let θc(D) denote the contribution to θc(y) of all edges that have at least
one end in D.

Observation 1. θc(D) ≥ k/2.
Proof. Partition D into two sets: A consists of all vertices that descend in F from

a vertex of I(R) that precedes (or equals) v; B consists of all vertices that descend
in F from a vertex of I(R) that follows (or equals) w. Both sets are nonempty
(v ∈ A,w ∈ B). Claim 2(c) and H k-edge connected imply

d(D) = d(A,P) + d(B,P) ≥ k,
d(A) = d(A,P) + d(A,B) ≥ k.

Adding the inequalities gives 2d(A,P) + d(B) ≥ 2k. Equivalently, d(A,P) + (d(B) −
k)/2 ≥ k/2. So it suffices to show θc(D) ≥ d(A,P) + (d(B) − k).

d(B) equals the number of edges covering the carving edge vw. Hence d(B)−k is
the number of times vw is redundantly covered. This is included in θc(D) because R
is launched by y. (Note that this is not true if we use the original definition of θc(y).)

It remains to show that every edge xz ∈ E(H) from A to P is counted in θc(y).
For this it suffices to prove (a) xz does not cover a carving edge, and (b) xz is launched
by y, i.e., x ∈ Ty.

We prove (a) by contradiction. Suppose xz covers e ∈ C. Let s be the deepest
vertex of R that is an ancestor of x. We will show that e descends from s in F .
x ∈ A shows that the tree path from s to f(s) does not contain the carving edge of
R. R proper and P tight implies that the tree path from f(s) to z does not contain
the carving edge of P . Hence the carving edge e covered by xz must descend from
s in F .

SMALLEST 3-EDGE CONNECTED SPANNING SUBGRAPH 69

Now Rule 3 shows that R has a child ear, launched by u, that is merging. This
follows since, after Long Ear has constructed ear R, the possible ear s, x, z is merging
(as s �= z). But the existence of such a merging ear contradicts the hypothesis of
Lemma A.1.

The contradiction proves (a). It is easy to see that (a) implies (b).
Consider again the child ear Q of Claim 4. Edge qu is not a short ear (since

q /∈ t(u)). Hence f(q) ∈ t(u) when Short Ear(·, 2) scans q (i.e., when line 2 of
Short Ear has x = q and i = 2). Consider the first ear that adds a vertex of I(P)
to t(u). Since Short Ear works bottom-up, Claim 2(c) implies this ear is a short ear
xu for some vertex x internal to a child ear R of P . Claim 2(b) shows that x is an
ancestor of the carving edge of R, so R is a proper child.

Case 2.1. R �= Q.
Observation 1 applies to both R and Q, since both are proper. Write D(R) for

the set of all descendants of I(R) and, similarly, write D(Q). No edge contributes
to both θc(D(R)) and θc(D(Q)). (More generally, let Q′ range over all child ears of
P except R. An edge leaving D(R) does not leave D(Q′) or cover any edge of Q′.
Similarly, an edge covering an edge of R does not leave D(Q′) or cover any edge of
Q′.) Now Observation 1 shows θc(y) ≥ k/2 + k/2 = k. Hence Lemma A.1(ii) holds.

Case 2.2. R = Q.
For consistency we refer to the ear as R. Let vw be the carving edge of R. Recall

vertices x ∈ I(R) ∩ t(u) and q ∈ I(Q) − t(u), both adjacent to u. This implies x �= q,
and both vertices are proper ancestors of w (Claim 2(b)).

Let D denote the set of all descendants of I(R). Partition D into three sets:
A (C) consists of all vertices that descend in F from the first (last) vertex of I(R),
respectively; B consists of all vertices that descend in F from a vertex of I(R) other
than the first or last. (For the remainder of the proof we are discarding the use of
“C” as the set of carving edges.) All three sets are nonempty: Since R = Q is tight,
w ∈ C. Since x and q are proper ancestors of w in I(R), A,B �= ∅.

Claim 2(c) and H k-edge connected imply

d(A) = d(A,P) + d(A,B) + d(A,C) ≥ k,
d(B) = d(B,P) + d(B,A) + d(B,C) ≥ k,
d(D) = d(A,P) + d(B,P) + d(C,P) ≥ k.

Adding the inequalities gives 2d(A ∪ B,P) + 2d(A,B) + d(C) ≥ 3k. Equivalently,
d(A ∪ B,P) + d(A,B) + (d(C) − k)/2 ≥ k. We will show θc(y) ≥ d(A ∪ B,P) +
d(A,B) + (d(C) − k), giving Lemma A.1(ii) as desired.

As in the proof of Observation 1, d(C) − k is the number of times the carving
edge vw is redundantly covered, and it is included in θc(y) since R is launched by y.
Similarly, the proof of Observation 1 shows that every edge xz ∈ E(H) from A∪B to
P is counted in θc(y). Finally, we must show the same for edges from A to B. This
follows by the same argument as in Observation 1.

The analogue of Lemma 5.12 is that any tip y ∈ Y has

(κ + χ + β)(y) + (θa + 2θb + θc + θd)(y)/k ≥ 1.

This is proved by exactly the same argument as before, using Lemma A.1 in place of
Lemma 5.11. The desired inequality (13) is then proved by the argument for (6) in
section 5.4.

70 HAROLD N. GABOW

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw-Hill,
New York, 1990.

[2] J. Cheriyan, A. Sebő, and Z. Szigeti, Improving on the 1.5-approximation of a smallest
2-edge connected spanning subgraph, SIAM J. Discrete Math., 14 (2001), pp. 170–180.

[3] J. Cheriyan and R. Thurimella, Approximating minimum-size k-connected spanning sub-
graphs via matching, SIAM J. Comput., 30 (2000), pp. 528–560.

[4] C. G. Fernandes, A better approximation ratio for the minimum size k-edge-connected span-
ning subgraph problem, J. Algorithms, 28 (1998), pp. 105–124.

[5] H. N. Gabow, Better performance bounds for finding the smallest k-edge connected spanning
subgraph of a multigraph, in Proceedings of the 14th Annual ACM-SIAM Symposium on
Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 2003, pp. 460–469.

[6] N. Garg, V. S. Santosh, and A. Singla, Improved approximation algorithms for biconnected
subgraphs via better lower bounding techniques, in Proceedings of the 4th Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, ACM, New York, 1993,
pp. 103–111.

[7] S. Khuller, Approximation algorithms for finding highly connected subgraphs, in Appoxima-
tion Algorithms for NP-hard Problems, D. S. Hochbaum, ed., PWS Publishing, Boston,
MA, 1997 pp. 236–265.

[8] S. Khuller and B. Raghavachari, Improved approximation algorithms for uniform connec-
tivity problems, J. Algorithms, 21 (1996), pp. 434–450.

[9] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, J. ACM, 41
(1994), pp. 214–235.

[10] S. Vempala and A. Vetta, Factor 4/3 approximations for minimum 2-connected subgraphs,
in Approximation Algorithms for Combinatorial Optimization, K. Jansen and S. Khuller,
eds., Lecture Notes in Comput. Sci. 1931, Springer-Verlag, Berlin, 2000, pp. 262–273.

[11] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River, NJ,
2001.

