Nearest Neighbor Learning

Greg Grudic

(Notes borrowed from Thomas G. Dietterich and Tom Mitchell)
Questions?
Nearest Neighbor Algorithm

• Given training data \((x_1, y_1), \ldots, (x_N, y_N)\)

• Define a distance metric between points in inputs space. Common measures are:
 – Euclidean (squared) \(D(x, x_i) = \sum_{j=1}^{d} (x_j - x_{i,j})^2\)
 – Weighted Euclidean \(w_j \geq 0\)

\[
D(x, x_i) = \sum_{j=1}^{d} w_j (x_j - x_{i,j})^2
\]
K-Nearest Neighbor Model

- Given test point \mathbf{x}
- Find the K nearest training inputs $\mathbf{x}_1, \ldots, \mathbf{x}_N$ to \mathbf{x} given the distance metric $D(\mathbf{x}, \mathbf{x}_i)$

- Denote these points as

$$\left(\mathbf{x}_1, y_1\right), \ldots, \left(\mathbf{x}_K, y_K\right)$$
K-Nearest Neighbor Model

• Regression:

\[\hat{y} = \frac{1}{K} \sum_{k=1}^{K} y_k \]

• Classification:

\[\hat{y} = \text{most common class in set } \{y_1, \ldots, y_K\} \]
K-Nearest Neighbor Model: Weighted by Distance

- **Regression:**
 \[
 \hat{y} = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)}
 \]

- **Classification:**
 \[
 \hat{y} = \text{most common class in weighted set}
 \]

 \[
 \left\{ \frac{1}{D(x, x_1)} y_1, \ldots, \frac{1}{D(x, x_K)} y_K \right\}
 \]
Picking K and $w_1, ..., w_d$

- Use N fold cross validation
 - Pick values that minimize the cross validation error
 - Details: Next Class!
Class Decision Boundaries: The Voronoi Diagram

Each line segment is equidistance between points in opposite classes. The more points, the more complex the boundaries.
K-Nearest Neighbor Algorithm

Characteristics

- **Universal Approximator**
 - Can model any many to one mapping arbitrarily well

- **Curse of Dimensionality**: Can be easily fooled in high dimensional spaces
 - Dimensionality reduction techniques are often used

- **Model can be slow to evaluate for large training sets**
 - kd-trees can help (low dimensional problems)
 - Cover Trees (high dimensional):
 - http://hunch.net/~jl/projects/cover_tree/cover_tree.html
 - Selectively storing data points also helps
kd-trees
Info and Questions?

• The next two lectures will be given by Sam Reid.
 – Validation, Model Selection, and Accuracy Estimation.
 – Please read and come prepared to discuss accEst.pdf (see web page for link).
• Class web page will be up soon.
• I will post a Homework assignment in the next week.
 – Nearest Neighbor algorithm.
 – Main Goal of the Assignment
 • Familiarization with Supervised Learning.
 • **Familiarization with Matlab.**