Summary Topics

- Supervised Learning
 - Model Selection (i.e. Learning Parameters)
 - Frequentist and Bayesian
 - Learning algorithm evaluation
 - Assumptions on Data
 - Generative and Discriminative Classifiers

Supervised Learning

- Given: Training examples
 \[\{(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_n, f(x_n))\} \]
 of some unknown function (system) \(y = f(x) \)

- Find \(\hat{f}(x) \) (i.e. an approximation)
 - Predict \(y' = \hat{f}(x') \) where \(x' \) is not in the training set

Two Types of Supervised Learning

- **Classification** \(y \in \{c_1, c_2, \ldots, c_N\} \)
 - Model output is a prediction that the input belongs to some class
 - If the input is an image, the output might be chair, face, dog, boat, etc.

- **Regression** \(y \in \mathbb{R} \)
 - The output has infinitely many values
 - If the input is stock features, the output could be a prediction of tomorrow’s stock price
Goal of Supervised Learning?

• Build a model that does best on Future Data!

Assumptions on Regression Data

• Data $(x_i, y_i), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ are independently identically distributed (iid) from $D(x)$ and $y \in \mathbb{R}$ are generated from $y_i = f(x_i) + \rho$

• where $f(x) \in \mathbb{R}$ is a real valued function defined on $x \in \mathbb{R}^d$ and ρ is a random variable $E[\rho] = 0, \quad V[\rho] = c, \quad c \in \mathbb{R}, \quad 0 \leq c < \infty$

Assumptions on Classification Data

• Assume data $(x_i, y_i), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^d$ and $y \in \{c_1, \ldots, c_K\}$ (i.e. K classes). The prior probability of each class is p_i and each class is iid from a pdf $h_i(x)$. Then the posterior probability of class c_i given x is

$$Pr(y = c_i | x) = \frac{p_i h_i(x)}{\sum_{i=1}^{K} p_i h_i(x)}$$

Building Supervised Learning Models

What are the outputs and inputs to a learning algorithm?

$(x_i, y_i), \ldots, (x_n, y_n)$ \longrightarrow Learning Algorithm \longrightarrow $M(x)$

Learning Parameters

Model is used to make predictions! $\hat{y} = M(x)$
Learning Parameters

- These dictate how the learning algorithm will build a model
- Changing the learning parameters changes how good the model is
- **Goal:** Choose the learning parameters that produce the best model

Measuring Model Accuracy: Regression

- Assume a set of data \(\{(x_i, y_i) \}_{i=1}^{K} \)
- Regression accuracy
 - Two commonly used metrics
 - **Mean Square Error**
 \[
 \text{error}_{\text{MS}}(x) = \frac{1}{K} \sum_{i=1}^{K} (y_i - M(x_i))^2 = \frac{1}{K} \sum_{i=1}^{K} (y_i - \hat{y}_i)^2
 \]
 - **Relative Error**
 \[
 \text{error}_{\text{RE}}(x) = \frac{\sum_{i=1}^{K} (y_i - M(x_i))^2}{\sum_{i=1}^{K} (y_i - \bar{y})^2}
 \]

Measuring Model Accuracy: Classification

- Assume a set of data \(\{(x_i, y_i) \}_{i=1}^{K} \)
- Classification accuracy
 \[
 \text{error}_{\text{CL}}(x) = \frac{1}{K} \sum_{i=1}^{K} c(x_i, y_i, M(x_i))
 \]
 where \(c(x_i, y_i, M(x_i)) = \begin{cases} 0 & \text{if } y_i = M(x_i) \\ 1 & \text{otherwise} \end{cases} \)

Picking the Best Learning Parameters

- Partition learning data into disjoint sets
 - **Training Set** \(\{(x_i, y_i) \}_{i=1}^{T} \)
 - Used to build the model
 - **Validation Set** \(\{(x_i, y_i) \}_{i=1}^{V} \)
 - Used to evaluate model
 - Pick the Learning Parameters that give the lowest error on the Validation Set
 \[
 \text{error}_{\text{VL}}(x) = \frac{1}{V} \sum_{i=1}^{V} c(x_i, y_i, M(x_i))
 \]
How Big Should the Training and Validation Sets Be?

• It Depends…
• If you have Lots of data for learning
 – Randomly putting half the data into each set is often sufficient
• If you only have a Small data set for learning
 – Usually do N-Fold Cross Validation

N-Fold Cross-Validation

• Partition the data $D = \{(x_i, y_i), \ldots, (x_N, y_N)\}$ into N disjoint sets T_1, \ldots, T_N
• For i from 1 to N, do
 – Use T_i for validation and the remaining S_i for training
 • Training Set: $S_i = \{D_k \setminus T_i\}$
 • Error on validation T_i: $error_i$
• Return the average error on validation sets
 \[
 error_{avg} = \frac{1}{N} \sum_{i=1}^{N} error_i
 \]
 Pick the learning parameters that minimize this error!

Does My Cross Validation Error Reflect the True Error of My Model?

• No!!!!!!!!!!!!!!!!!!!!
• Need to do randomized experiments
 – e.g. 100 experiments
 • 90% data for learning (use cross validation on this set to pick learning parameters)
 • 10% for testing
 • Report average test error over the 100 experiments

Bayesian Model Selection

• Pick the hypothesis that has maximum probability given the data – Bayes Theorem:
 \[
 P(h|D) = \frac{P(D|h)P(h)}{P(D)}
 \]
 • $P(h)$ = prior probability of hypothesis h
 • $P(D|h)$ = prior probability of training data D
 • $P(h|D)$ = probability of h given D
 • $P(D)$ = probability of D given h

• Learning parameters are chosen to maximize the probability of the hypothesis given the data
Generative and Discriminative Classifiers

- **Generative Classifier Models**: model the distributions that generate the data (e.g. Bayesian density models.)
 \[\hat{y} = \arg \max_i \left\{ \hat{p}_i \hat{h}_i(x) \right\} \]

- **Discriminative classifier Models**: model only the boundaries (e.g. trees, SVMs, Nearest Neighbor, Neural Networks, etc.)

Supervised Learning Algorithms I

- **Linear Regression**
- **Ridge Regression**
 - Linear and Kernel
- **Lasso Regression**
 - Linear and Kernel
- **Perceptron Classification**
- **Support Vector Machines**
 - Classification and Regression

Supervised Learning Algorithms II

- **K Nearest Neighbors**
 - Classification and Regression
- **Decision Trees**
 - 1-R stump
- **Neural Networks**
 - Classification and Regression
- **Bagging**
 - Classification and Regression
- **Random Forests**
 - Classification and Regression
- **Boosting Classifiers**

Linear Regression

- **Main Assumptions**:
 - Linear weighted sum of attribute values.
 - Attributes and target values are real valued.
- **Hypothesis Space**
 - Fixed size (parametric) limited modeling potential
 \[y = \sum_{i=1}^{K} \beta_i \phi_i(x) + \beta_0 \]
 - Can be made non-linear using basis functions (now linear in basis function space)

[Note: The image contains mathematical expressions and formulas that are not rendered properly in the text format.]
Linear Regression Learning Algorithms

- Minimum Least Square Error
 \[\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{M} \beta_j x_{ij})^2 \]

- Ridge Regression
 \[\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{M} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{M} \beta_j^2 \]

- Lasso
 \[\hat{\beta} = \arg \min_{\beta} \sum_{i=1}^{N} (y_i - \beta_0 - \sum_{j=1}^{M} \beta_j x_{ij})^2 \]
 subject to \(\sum_{j=1}^{M} |\beta_j| \leq s, \quad s > 0 \)

Linear Regression Summary

- Good points
 - Does feature selection - LASSO

- Bad points
 - Slow learning on very large datasets (>20,000)

- Software
 - LARS: http://www-stat.stanford.edu/~hastie/Papers/LARS/

Perceptron Algorithm: Finds a Linear Separating Hyper-Plane

\[y = \text{sgn} \left[\beta_0 + \sum_{i=1}^{M} \beta_i x_i \right] \]

Linear Separating Hyper-Planes

\[w^T x + b = 0 \]
\[w^T x + b > 0 \]
\[w^T x + b < 0 \]
\[y = +1 \]
\[y = -1 \]
Linear Hyperplanes

- Linearity
 - Linearly Separable
 - Not Linearly Separable

Nonlinear Perceptron Algorithm

- Use a nonlinear basis function space

\[y = \text{sgn} \left[\beta_0 + \sum_{i=1}^{K} \beta_i \varphi_i(x) \right] \]

- Basis functions can be kernels

Perceptron Algorithm

- Works by gradient descent

\[\beta = \beta - \rho \left[\frac{\partial L}{\partial \beta} \right] \]

\[L(\beta_0, \beta_1, ..., \beta_3) = \sum_{x \in M} y \left(\beta_0 + \sum_{i=1}^{3} \beta_i x_i \right) \]

where \(M \) is the set of misclassified training examples

Perceptron Summary

- Good points
 - Convergence guaranteed if problem is separable
 - In basis function space or linear space
 - Works on large data sets
 - Algorithm works by gradient descent

- Bad points
 - Won’t converge if data isn’t separable

- Learning Parameters
 - Learning rate, choice of nonlinear basis functions,…
Support Vector Machines

- Main Assumption:
 - Build a model using minimal number of training instances (Support Vectors).

- Hypothesis Space
 - Variable size (nonparametric): Can model any function given the right kernels
 - e.g. Gaussian

What are the Support Vectors?

Maximized Margin

Linear Support Vector Machines

We’d like the hyperplane with maximum margin
- size of margin is \(\frac{1}{\|w\|} \)

So view our problem as a constrained optimization problem:

Minimize \(||\alpha||^2 \), subject to

\[
g(x_i \cdot \alpha^T + b) - 1 \geq 0, \forall x_i
\]

What Happens When Data is Not Separable: Soft Margin SVM

Add a Slack Variable

\[
\xi_i = \begin{cases} 0 & \text{if } x_i \text{ correctly classified} \\ \text{distance to margin} & \text{otherwise} \end{cases}
\]
Soft Margin SVM: Constraint Optimization Problem

- Given data: \((x_1, y_1), \ldots, (x_N, y_N)\)
- Minimize \(\frac{1}{2} \|w\|^2 + C \sum_{i=1}^{N} \xi_i\) subject to:
 \[y_i (w^T x_i + b) \geq 1 - \xi_i, \quad \forall i = (1, \ldots, N) \]

Dual Problem (Non-separable data)

- Maximize

 \[W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \]

- Subject to

 \[0 \leq \alpha_i \leq C, \quad i = 1, \ldots, N \]
 \[\sum_{i=1}^{N} \alpha_i y_i = 0 \]

Mapping into Nonlinear Space

\(\Phi : \mathbb{R}^2 \rightarrow \mathbb{R}^3\)

\((x_1, x_2) \mapsto (z_1, z_2, z_3) := (x_1^2, \sqrt{2} x_1 x_2, x_2^2)\)

Kernel Trick

Replace \(\langle x_i, x_j \rangle\)

with

\[K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle \]

Can use the same algorithms in nonlinear kernel space!
Nonlinear SVMs

Maximize:
\[W(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \]

Boundary:
\[f(x) = \text{sgn} \left(\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b \right) \]

Need Mercer Kernels
\[K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle = \langle \Phi(x_j), \Phi(x_i) \rangle = K(x_j, x_i) \]

Gram (Kernel) Matrix
Training Data: \((x_1, y_1),\ldots,(x_N, y_N)\)
\[K = \begin{pmatrix} K(x_1, x_1) & \cdots & K(x_1, x_N) \\ \vdots & \ddots & \vdots \\ K(x_N, x_1) & \cdots & K(x_N, x_N) \end{pmatrix} \]
Properties:
- Positive Definite Matrix
- Symmetric
- Positive on diagonal
- N by N

Commonly Used Mercer Kernels
- Polynomial
 \[K(x_i, x_j) = (\langle x_i, x_j \rangle + c)^d \]
- Sigmoid
 \[K(x_i, x_j) = \tanh(\kappa \langle x_i, x_j \rangle + \theta) \]
- Gaussian
 \[K(x_i, x_j) = \exp \left(-\frac{1}{2\sigma^2} \| x_i - x_j \|^2 \right) \]
SV Regression: \(\varepsilon \)-Insensitive Loss

Goal: generalize SV pattern recognition to regression, preserving the following properties:

- formulate the algorithm for the linear case, and then use kernel trick
- sparse representation of the solution in terms of SVs

\(\varepsilon \)-Insensitive Loss:

\[
|y - f(x)|_\varepsilon := \max(0, |y - f(x)| - \varepsilon)
\]

Estimate a linear regression \(f(x) = \langle w, x \rangle + b \) by minimizing

\[
\frac{1}{2}||w||^2 + C \sum_{i=1}^{m} |y_i - f(x_i)|_{\varepsilon}.
\]

Formulation as an Optimization Problem

Estimate a linear regression

\[
f(x) = \langle w, x \rangle + b
\]

with precision \(\varepsilon \) by minimizing

\[
\min \tau(w, \xi, \xi^*) = \frac{1}{2}||w||^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i^*)
\]

subject to

\[
\langle w, x_i \rangle + b - y_i \leq \varepsilon + \xi_i
\]

\[
y_i - \langle w, x_i \rangle - b \leq \varepsilon + \xi_i^*
\]

\[
\xi_i, \xi_i^* \geq 0
\]

for all \(i = 1, \ldots, m \).

Dual Problem, In Terms of Kernels

For \(C > 0, \varepsilon \geq 0 \) chosen a priori,

maximize \[
W(\alpha, \alpha^*) = -\sum_{i=1}^{m} (\alpha_i + \alpha_i^*) + \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) y_i
\]

\[
-\frac{1}{2} \sum_{i,j=1}^{m} (\alpha_i^* - \alpha_i)(\alpha_j^* - \alpha_j) k(x_i, x_j)
\]

subject to \(0 \leq \alpha_i, \alpha_i^* \leq C, \ i = 1, \ldots, m \), and \(\sum_{i=1}^{m} (\alpha_i - \alpha_i^*) = 0 \).

The regression estimate takes the form

\[
f(x) = \sum_{i=1}^{m} (\alpha_i^* - \alpha_i) k(x_i, x) + b.
\]
SVM Summary

- **Good points**
 - Picks a subset of the data that explains it all
 - Gives good models
- **Bad points**
 - Slow on large datasets (<20,000)
 - Difficult to pick good kernels
- **Software**
 - LIBSVM, SVMlight, etc

K Nearest Neighbor

- **Main Assumption:**
 - An effective distance metric exists.
- **Hypothesis Space**
 - Variable size (nonparametric): Can model any function

Nearest Neighbor Algorithm

- Given training data \(\{(x_i, y_i)\}_{i=1}^{N} \)
- Define a distance metric between points in inputs space. Common measures are:
 - Euclidean (squared) \(D(x, x_i) = \sum_{j=1}^{d} (x_j - x_{i,j})^2 \)
 - Weighted Euclidean \(w_j \geq 0 \)
 \[D(x, x_i) = \sum_{j=1}^{d} w_j (x_j - x_{i,j})^2 \]

K-Nearest Neighbor Model

- Given test point \(x \)
- Find the \(K \) nearest training inputs \(x_i, \ldots, x_N \) to \(x \) given the distance metric \(D(x, x_i) \)
- Denote these points as \((x_i, y_i), \ldots, (x_K, y_K) \)
K-Nearest Neighbor Model

- **Regression:**
 $$\hat{y} = \frac{1}{K} \sum_{k=1}^{K} y_k$$

- **Classification:**
 $$\hat{y} = \text{most common class in set } \{y_1, ..., y_K\}$$

K-Nearest Neighbor Model: Weighted by Distance

- **Regression:**
 $$\hat{y} = \frac{\sum_{k=1}^{K} D(x, x_k) y_k}{\sum_{k=1}^{K} D(x, x_k)}$$

- **Classification:**
 $$\hat{y} = \text{most common class in weighted set } \left\{ \frac{1}{D(x, x_1)} y_1, ..., \frac{1}{D(x, x_K)} y_K \right\}$$

K Nearest Neighbor Summary

- **Good points**
 - Fast learning
 - Can learn anything
 - Trivial to implement
- **Bad points**
 - Slow predictions for large datasets
 - Distance metric is critical
- **Software**

Decision Trees

- **Main Assumption:**
 - Data effectively modeled via decision splits on attributes.
- **Hypothesis Space**
 - Variable size (nonparametric): Can model any function
1-R (A Decision Tree Stump)

- **Main Assumptions**
 - Only one attribute is necessary.
 - Finite number of splits on the attribute.
- **Hypothesis Space**
 - Fixed size (parametric): Limited modeling potential

Decision Tree Summary

- **Good points**
 - Does feature selection
 - Models can be interpreted
 - Works on large data sets
- **Bad points**
 - Model performance often not best
- **Learning Parameters**
 - Depth of tree, choice of splitting function, pruning, etc...
- **Software**

Neural Networks

- **Main Assumption:**
 - Many simple functional units, combined in parallel, produce effective models.
- **Hypothesis Space**
 - Variable size (nonparametric): Can model any function
Neural Networks Summary

- **Good points**
 - Can work on very large data sets
 - Gradient descent

- **Bad points**
 - Not easy to interpret
 - Can be difficult to choose a topology

- **Software**

Bagging

- **Main Assumption:**
 - Combining many unstable predictors to produce an ensemble (stable) predictor.
 - Unstable Predictor: small changes in training data produce large changes in the model.
 - e.g. Neural Nets, trees
 - Stable: SVM (sometimes), nearest Neighbor.

- **Hypothesis Space**
 - Variable size (nonparametric): Can model any function

Bagging (continued)

- Each predictor in ensemble is created by taking a bootstrap sample of the data.
- Bootstrap sample of N instances is obtained by drawing N example at random, with replacement.
- On average each bootstrap sample has 63% of instances
 - Encourages predictors to have uncorrelated errors.

Sigmoid Unit

\[\sigma(x) = \frac{1}{1 + e^{-x}} \]

Nice property:

\[\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x)) \]

We can derive gradient decent rules to train

- One sigmoid unit
- Multilayer networks of sigmoids → Backpropagation
Bagging Reborn: Random Forests

- Injecting the right kind of randomness makes accurate models
 - As good as SVMs and sometimes better
 - As good as boosting
- Very little playing with learning parameters is needed to get very good models
- Traditional tree algorithms spend a lot of time choosing how to split at a node
 - Random forest trees put very little effort into this

R.I. (Random Input) Forests

- For K trees:
 - Build each tree by:
 - Selecting, at random, at each node a small set of features (F) to split on. Common values of F are
 \[F = 1 \]
 \[F = \log(M) + 1 \]
 - For each node split on the best of this subset
 - Grow tree to full length
 - Regression: average over trees
 - Classification: vote

R.C. (Random Combination) Forests

- For K trees:
 - Build each tree by:
 - Create F random linear sums of L variables
 \[A_f = \sum_{i=1}^{L} b_f x_{i+1}, \ldots, A_g = \sum_{i=1}^{L} b_g x_{i+1} \]
 \[b_f = \text{uniform random} \ [-1,1] \]
 - At each node split on the best of these linear boundaries
 - Grow tree to full length
 - Regression: average over trees
 - Classification: vote

Random Forests Summary

- Good points
 - Fast learning
 - Can learn anything
 - Feature weighting
 - Very little parameter tuning
 - Gives a good estimate of model accuracy
 - Uses out of bag examples
- Bad points
 - Models are huge
- Software
Boosting

– Main Assumption:
 • Combining many weak predictors (e.g. tree stumps or 1-R predictors) to produce an ensemble predictor.

– Hypothesis Space
 • Variable size (nonparametric): Can model any function
 – However, some functions are not learnable if tree size is limited

Boosting (Continued)

• Each predictor is created by using a biased sample of the training data
 – Instances (training examples) with high error are weighted higher than those with lower error
• Difficult instances get more attention

Boosting Summary

• Good points
 – Fast learning
 – Can learning anything
 – Feature weighting
 – Very little parameter tuning
• Bad points
 – Can overfit data
• Software

Feature Selection?

• The goal of feature selection is to find a subset of the inputs that give the best accuracy on future data