Table of Contents

1 Introduction .. 1
 1.1 Overview ... 1
 1.2 Combining Manipulatives and Software 3
 1.3 HyperGami ... 4
 1.4 JavaGami .. 6
 1.5 Results ... 7
 1.6 Reader's Guide ... 7

2 Tools for Spatial Thinking 8
 2.1 Some Definitions of Spatial Ability 8
 2.2 Spatial Ability and Science/Mathematics Achievement 11
 2.3 Is Spatial Thinking Trainable? The Case for Manipulatives.. 13
 2.4 Beyond Manipulatives 15

3 HyperGami .. 18
 3.1 Description ... 18
 3.2 Work with Elementary, Middle, & High-School Students.. 21
 3.3 Design Lessons Learned 29
 3.4 Themes Discovered 33

4 JavaGami .. 37
 4.1 Description ... 37
 4.2 Implementation of JavaGami 40
 4.3 Addressing Design Issues in HyperGami 42
 4.4 Use of JavaGami .. 47

5 Assessment of Children's Spatial Learning 50
 5.1 Overview .. 50
 5.2 Net and Solid Card Matching 53
 5.3 Verbal Shape Description 59
 5.4 Polyhedron Drawings 70
 5.5 Folding Net Drawings 74
 5.6 Surface Development Test 86
 5.7 Cube Rotations ... 89
 5.8 Chapter Summary .. 91

6 A Case Study in JavaGami 93
 6.1 Overview .. 93
 6.2 Session #1: Getting Started 93
 6.3 Session #2: Capping and Stretching 97
 6.4 Session #3: A Goldfish Gift 101
 6.5 Session #4: Slicing ... 103
 6.6 Session #5: Mystery Shapes 105
 6.7 Discussion .. 110
7 **Stepping Back** ... 112
 7.1 Related Work... 112
 7.2 Contributions... 118
 7.3 Future Plans.. 122
 7.4 What is REAL?... 123

References .. 124

Appendix A
HyperGami Orihedra ... 130

Appendix B
Work by Elementary and Middle-School Students in HyperGami.. 133

Appendix C
HyperGami Work by High School Students........................... 135

Appendix D
Work by Elementary and Middle-School Students in JavaGami.... 137

Appendix E
Sample Assessment Procedures 138
List of Tables

Table 5-1	Elementary and middle-school students working with HyperGami and JavaGami, 1994-1998.	51
Table 5-2	High school students working with HyperGami, 1997-1998.	52
Table 5-3	Assessment summary descriptions.	52
Table 5-4	Number of incorrect solid matchings (out of 5 pre-tests and 4 post-tests) for folding nets.	55
Table 5-5	Polyhedra used in the shape-description task.	60
Table 5-6	Sample categorizations of children's polyhedron descriptions.	62-63
Table 5-7	Samples of pre- and post- shape descriptions by children who worked only with paper shapes.	64
Table 5-8	Pre- and post- JavaGami shape descriptions by a seventh-grade girl.	66
Table 5-9	Seventh grade boy's pre- and post- descriptions	67-68
Table 5-10	Polyhedra used in the shape-drawing task.	70
Table 5-11	Polyhedra given to student groups. Students were asked to draw what these shapes would look like unfolded.	75
Table 5-12 (a)	Categories of folding nets.	77
Table 5-12 (b)	Categories of folding nets, continued.	78
Table 5-13	Orthogonally-drawn cuboctahedron nets.	79-80
Table 5-14	Key to the symbols used in the folding net summary tables.	83
Table 5-15	Pre- and post- net classifications for elementary- and middle-school JavaGami students.	83
Table 5-16	Net classifications for elementary- and middle-school HyperGami students.	84
Table 5-17	Pre- and post- net classifications for paper shapes students -- students worked with either six or eight shapes, depending on their general mood by the end of the sixth shape on the pre-test.	84
Table 5-18	ETS Surface Development Scores for JavaGami and Paper Shapes students.	88
Table 6-1 (a)	Annotated transcript of the mystery shapes session.	106
Table 6-1 (b)	Annotated transcript, part 2.	107
Table 6-1 (c)	Annotated transcript, part 3.	108
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-1</td>
<td>Operations on an octahedron. The octahedron in (a) is stretched along the z-axis in (b); has a pyramid added to one of its faces in (c); is sliced into parts in (d); and is truncated at a single vertex in (e).</td>
<td>3</td>
</tr>
<tr>
<td>1-2</td>
<td>Mathematical paper sculpture created in HyperGami: (a) Venus Flytrapohedron, and (b) Turtlehedron.</td>
<td>5</td>
</tr>
<tr>
<td>1-3</td>
<td>Overview of the JavaGami interface.</td>
<td>6</td>
</tr>
<tr>
<td>2-1</td>
<td>Samples of work by (a) Johannes Kepler, (b) M.C. Escher, and (c) Scott Kim.</td>
<td>8</td>
</tr>
<tr>
<td>2-2</td>
<td>A sample mental rotations task. (Shepard & Metzler, 1971).</td>
<td>9</td>
</tr>
<tr>
<td>2-3</td>
<td>Samples of mental paper-folding tasks. (Shepard & Feng, 1972).</td>
<td>10</td>
</tr>
<tr>
<td>3-1</td>
<td>A view of the HyperGami screen in the course of a typical scenario.</td>
<td>18</td>
</tr>
<tr>
<td>3-2</td>
<td>Applying a linear map to a polyhedral object by direct manipulation. The student (a) selects a menu choice and the system (b) displays the new solid and (c) the corresponding folding net.</td>
<td>19</td>
</tr>
<tr>
<td>3-3</td>
<td>Creating a capped dodecahedron object from a dodecahedron. The student first (a) enters a Scheme expression in the transcript window and clicks on the face to cap. The new solid object is shown in (b) and the corresponding folding net is shown in (c).</td>
<td>20</td>
</tr>
<tr>
<td>3-4</td>
<td>The cube (a) is capped (b); stretched along the x-axis (c); and sliced (d). Corresponding folding nets generated by the software are shown under the solid objects.</td>
<td>21</td>
</tr>
<tr>
<td>3-5</td>
<td>Folding nets for (a) an origami snail, and (b) an origami turtle decorated by a pair of girls, ages 8 and 13.</td>
<td>22</td>
</tr>
<tr>
<td>3-6</td>
<td>Student work from Fall 1994 - origami snails, turtles, frogs, and a giraffe; a rotating mathematical toy hexaflexagon in the center; a modular origami piece on the left; a dodecahedron; and a great stellated dodecahedron.</td>
<td>23</td>
</tr>
</tbody>
</table>
Figure 3-7
Penguinhedra developed by the author illustrate the idea of polyhedra as building blocks for paper sculpture.

Figure 3-8
(a) A polyhedral castle designed by an 8th grade girl; (b) a polyhedral sculpture by a 6th grade boy; and (c) a dinosaur standing on a log by a 7th grade boy.

Figure 3-9
A caterpillarhedron which was a collaborative effort between six children and their parents.

Figure 3-10
(a) A capped cuboctahedron sculpture by two 9th- and 10th-grade girls (printed in black-and-white and colored with markers) (b) a paper rocket by a 9th grade boy (c) a polyhedral sculpture by a 9th grade boy based on a design by mathematician Alan Holden.

Figure 3-11
The interface for changing the coordinate scale in HyperGami.

Figure 3-12
(a) "Mrs. Studer rocks": A folding net for a dodecahedron for an eighth-grade boy's favorite teacher; (b) "I love dad": a folding net for a gift for a fifth-grade girl's father; (c) "Arielle": a folding net for a gift for the same fifth-grader's sister.

Figure 3-13
Paper gifts received at a conference of origami artists.

Figure 3-14
(a) A "friendship icosahedron" net with the initials of two girls. (b) A net for one of the pyramids of a twenty-point great stellated dodecahedron, also with the girls' initials.

Figure 4-1
Overview of the JavaGami system.

Figure 4-2
A cube net with a Martian motif designed in JavaGami by a 9 year-old girl.

Figure 4-3
Clicking to rotate the polyhedron about the x-axis.

Figure 4-4
A wireframe version of a capped cube. The wireframe object can be rotated by dragging the mouse over the window.
Figure 4-5 Applying successive functions to a cube in JavaGami. The cube in (a) is capped; the capped cube (b) is truncated at a vertex; the resulting solid (c) is then stretched along the z-axis; and the resulting shape (d) is sliced into two parts: (e) and (f).

Figure 4-6 Instead of menu toggles (left) to access sets of shapes, the current version of JavaGami has a "Shape Sets" picker bar (upper right). The set of shapes is loaded into the "Shapes" window at the bottom.

Figure 4-7 The indicator panel at the bottom displays the current color and tool selected.

Figure 4-8 A dodecahedron in the wireframe window illustrating the orientation of opposite pentagons relative to one another.

Figure 4-9 A modular sculpture composed of cuboctahedra and antiprisms designed in JavaGami by a 5th-grade boy.

Figure 4-10 (a) A giant-sized pencil designed by a 10 year-old boy; (b) An ice cream cone designed by a 9 year-old girl.

Figure 5-1 Folding nets used in net-solid matching task.

Figure 5-2 Polyhedra to add to the net-solid matching task. (a) snub cube and square antiprism; (b) regular pentagonal bipyramid; (c) stretched tetrahedron and stretched triangular antiprism; (d) rhombic dodecahedron; (e) dual of the cuboctahedron.

Figure 5-3 Mitchelmore's classification of drawings of regular solid figures. From Mitchelmore (1978), p. 235.

Figure 5-4 Drawings of an octahedron by (a) NAT (9th grade boy) and (b) AMD (10th grade girl).

Figure 5-5 Drawings of a rhombic dodecahedron by (a) ALD (12th grade girl); (b) RAP (9th grade boy); and (c) RAW (9th grade boy).

Figure 5-6 Drawings of (a) a tetrahedron by ELV (10th grade boy); (b) an edge-capped cube by BRH (9th grade girl); and the same edge-capped cube by (c) CAC (10th grade girl).

Figure 5-7 Folding nets for the octahedron drawn by (a) MEB, grade 12 and (b) TSR, grade 6.
Figure 5-8 Rhombic dodecahedron nets drawn by (a) LAP, grade 9; and (b) HSW, grade 4.

Figure 5-9 Pre- and post test nets drawn by a fourth-grade boy working with HyperGami.

Figure 5-10 An eleventh-grade girl's (a) pre- and (b) post-test nets of a capped cube

Figure 5-11 Pre- and post- nets of a cuboctahedron drawn by a ninth-grade boy.

Figure 5-12 Sample question from the ETS Surface Development test.

Figure 5-13 Pre- and post- test scores from 37 high school students on the ETS Surface Development test.

Figure 5-14 Sample question from the ETS Cube Rotations test.

Figure 5-15 Pre- and post- test scores from 25 high school students on the ETS Cube Rotations test.

Figure 6-1 An overview of the version of the software Jesse worked with in his first session.

Figure 6-2 Jesse's first net decorated in JavaGami.

Figure 6-3 Jesse's finished dodecahedron.

Figure 6-4 Jesse's folding net for the octahedron.

Figure 6-5 A new version of the software which included function buttons and separate windows for selecting shapes.

Figure 6-6 A folding net for the truncated cube.

Figure 6-7 (a) A picture of the triply-capped truncated cube, and (b) the corresponding folding net generated by the software.

Figure 6-8 Jesse's truncated tetrahedron with a cap.

Figure 6-9 The folding net for Jesse's fish body.

Figure 6-10 The folding net for Jesse's fish head. He took some time positioning the eyes in the correct place.

Figure 6-11 The folding net for the fish tail.

Figure 6-12 The sliced dodecahedron net.
Figure 6-13 (a) Jesse's sliced dodecahedron. (b) A different view of the same shape.

Figure 6-14 Mystery shapes: Jesse was given paper models of these shapes and asked to recreate the shapes in JavaGami.

Figure 6-15 Jesse's strategies for creating the stretched cuboctahedron.

Figure 6-16 (a). The cuboctahedron as it appears in the Shapes palette; (b) the cuboctahedron in the wireframe window.

Figure 7-1 (a) One of the shape rendering interfaces in form-Z; (b) Solid objects and their folding nets in form-Z.

Figure 7-2 (a) The shape-modeling interface in Touch-3D, and (b) an unfolded model.

Figure 7-3 (a). The modeling interface for tabs+, and (b) the folding net interface.

Figure 7-4 Plato's World in Shape Up!

Figure 7-5 Screen interface of The Factory

Figure 7-6 Scheherezade. A crank-shaft automaton designed by the author.

Figure 7-7 (a) The Barecats by Paul Spooner and Matt Smith. (b) The Mill Girl and Toff by Paul Spooner.